Smith theory for$p$-groups
HTML articles powered by AMS MathViewer
- by James A. Maiorana
- Trans. Amer. Math. Soc. 223 (1976), 253-266
- DOI: https://doi.org/10.1090/S0002-9947-1976-0423387-3
- PDF | Request permission
Abstract:
When a p-group G acts on a manifold, the behavior of the cohomology of the subgroups of G singles out a special collection of fixed point sets of these subgroups. A bound on the size of the spaces in this collection is derived using equivariant cohomology. For a special class of nonabelian p-groups this bound is strong enough to require that certain fixed point sets must vanish. Application of this bound to a linear representation of G yields a lower bound for the cohomology of G.References
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Wu-yi Hsiang, Some fundamental theorems in cohomology theory of topological transformation groups, Bull. Amer. Math. Soc. 77 (1971), 1094–1098. MR 309139, DOI 10.1090/S0002-9904-1971-12882-3
- Wu-yi Hsiang, Structural theorems for topological actions of $Z_{2}$-tori on real, complex and quaternionic projective spaces, Comment. Math. Helv. 49 (1974), 479–491; addendum, ibid. 50 (1975), 277–279. MR 375362, DOI 10.1007/BF02566743 J. Maiorana, A cohomology invariant for finite groups (to appear). —, Cohomology of p-groups, Thesis, Princeton Univ., 1974.
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505 (French). MR 45386, DOI 10.2307/1969485
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258, DOI 10.1515/9781400883875
- René Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup. (3) 69 (1952), 109–182 (French). MR 0054960, DOI 10.24033/asens.998
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 223 (1976), 253-266
- MSC: Primary 57E10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0423387-3
- MathSciNet review: 0423387