A quasi-Anosov diffeomorphism that is not Anosov

Authors:
John Franks and Clark Robinson

Journal:
Trans. Amer. Math. Soc. **223** (1976), 267-278

MSC:
Primary 58F15

DOI:
https://doi.org/10.1090/S0002-9947-1976-0423420-9

MathSciNet review:
0423420

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we give an example of a diffeomorphism *f* on a three dimensional manifold *M* such that *f* has a property called quasi- Anosov but such that *f* does not have a hyperbolic structure (is not Anosov). Mañé has given a method of extending *f* to a diffeomorphism *g* on a larger dimensional manifold *V* such that *g* has a hyperbolic structure on *M* as a subset of *V*. This gives a counterexample to a question of M. Hirsch.

**[1]**John Franks,*Differentiably Ω-stable diffeomorphisms*, Topology**11**(1972), 107–113. MR**296972**, https://doi.org/10.1016/0040-9383(72)90025-0**[2]**Morris W. Hirsch,*On invariant subsets of hyperbolic sets*, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 126–135. MR**0264684****[3]**Morris W. Hirsch and Charles C. Pugh,*Stable manifolds and hyperbolic sets*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR**0271991****[4]**Zbigniew Nitecki,*Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms*, The M.I.T. Press, Cambridge, Mass.-London, 1971. MR**0649788****[5]**Ricardo Mañé,*Expansive diffeomorphisms*, Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Springer, Berlin, 1975, pp. 162–174. Lecture Notes in Math., Vol. 468. MR**0650658****[7]**Robert J. Sacker and George R. Sell,*Existence of dichotomies and invariant splittings for linear differential systems. I*, J. Differential Equations**15**(1974), 429–458. MR**341458**, https://doi.org/10.1016/0022-0396(74)90067-9**[8]**-,*Existence of dichotomies and invariant splittings for linear differential systems*. II (to appear).**[9]**James F. Selgrade,*Isolated invariant sets for flows on vector bundles*, Trans. Amer. Math. Soc.**203**(1975), 359–390. MR**368080**, https://doi.org/10.1090/S0002-9947-1975-0368080-X**[10]**S. Smale,*Differentiable dynamical systems*, Bull. Amer. Math. Soc.**73**(1967), 747–817. MR**228014**, https://doi.org/10.1090/S0002-9904-1967-11798-1**[11]**R. F. Williams,*The “𝐷𝐴” maps of Smale and structural stability*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 329–334. MR**0264705**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F15

Retrieve articles in all journals with MSC: 58F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1976-0423420-9

Article copyright:
© Copyright 1976
American Mathematical Society