Hypoelliptic convolution equations in $K’_p$, $p>1$
HTML articles powered by AMS MathViewer
- by G. Sampson and Z. Zieleźny
- Trans. Amer. Math. Soc. 223 (1976), 133-154
- DOI: https://doi.org/10.1090/S0002-9947-1976-0425607-8
- PDF | Request permission
Abstract:
We consider convolution equations in the space ${K’_p},p > 1$, of distributions which “grow” no faster than $\exp (k|x{|^p})$ for some constant k. Our main result is a complete characterization of hypoelliptic convolution operators in ${K’_p}$ in terms of their Fourier transforms.References
- L. Ehrenpreis, Solution of some problems of division. IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522–588. MR 119082, DOI 10.2307/2372971
- G. I. Èskin, A generalization of a theorem of Paley-Wiener-Schwarz, Uspehi Mat. Nauk 16 (1961), no. 1 (97), 185–188 (Russian). MR 0131124
- Morisuke Hasumi, Note on the $n$-dimensional tempered ultra-distributions, Tohoku Math. J. (2) 13 (1961), 94–104. MR 131759, DOI 10.2748/tmj/1178244354
- Lars Hörmander, Hypoelliptic convolution equations, Math. Scand. 9 (1961), 178–184. MR 139838, DOI 10.7146/math.scand.a-10633 L. Schwartz, Séminaire de Schwartz 1953/54. Produits tensoriels topologiques d’espaces vectoriels topologiques. Espaces vectoriels topologiques nucléaires, Secrétariat mathématique, Paris, 1954. MR 17, 764. —, Théorie des distributions. Tomes I, II, Actualités Sci. Indust., nos. 1091, 1122, Hermann, Paris, 1950, 1951. MR 12, 31; 833.
- Z. Zieleźny, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions. I, Studia Math. 28 (1966/67), 317–332. MR 222476, DOI 10.4064/sm-28-3-317-332
- Z. Zieleźny, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions. II, Studia Math. 32 (1969), 47–59. MR 248521, DOI 10.4064/sm-32-1-47-59
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 223 (1976), 133-154
- MSC: Primary 46F10; Secondary 47G05
- DOI: https://doi.org/10.1090/S0002-9947-1976-0425607-8
- MathSciNet review: 0425607