A Banach algebra of functions with bounded $n$th differences
HTML articles powered by AMS MathViewer
- by John T. Daly and Philip B. Downum
- Trans. Amer. Math. Soc. 223 (1976), 279-294
- DOI: https://doi.org/10.1090/S0002-9947-1976-0425616-9
- PDF | Request permission
Abstract:
Several characterizations are given for the Banach algebra of $(n - 1)$-times continuously differentiable functions whose $(n - 1)$st derivative satisfies a bounded Lipschitz condition. The structure of the closed primary ideals is investigated and spectral synthesis is shown to be satisfied.References
- R. P. Boas Jr. and D. V. Widder, Functions with positive differences, Duke Math. J. 7 (1940), 496–503. MR 3436
- Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR 0157156
- Georges Glaeser, Synthèse spectrale des idéaux de fonctions lipschitziennes, C. R. Acad. Sci. Paris 260 (1965), 1539–1542 (French). MR 173952
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- A. Wayne Roberts and Dale E. Varberg, Convex functions, Pure and Applied Mathematics, Vol. 57, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0442824
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- Donald R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240–272. MR 161177, DOI 10.1090/S0002-9947-1964-0161177-1
- Lucien Waelbroeck, Closed ideals of Lipschitz functions, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 322–325. MR 0194926
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 223 (1976), 279-294
- MSC: Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0425616-9
- MathSciNet review: 0425616