An application of functional operator models to dissipative scattering theory
HTML articles powered by AMS MathViewer
- by Daniel Alan Bondy
- Trans. Amer. Math. Soc. 223 (1976), 1-43
- DOI: https://doi.org/10.1090/S0002-9947-1976-0428077-9
- PDF | Request permission
Abstract:
An abstract framework for dissipative scattering theory is developed and then applied to two systems previously considered by P. Lax and R. S. Phillips. Results relating the poles and zeroes of the scattering matrix to the spectra of the infinitesimal generators A (which generates the semigroup formed by mapping initial data into solution data at time t) and B (which generates a “local” semigroup) are proven. In particular these results are shown to follow from the fact that the characteristic function of A (appropriately defined) and the scattering matrix combine to form the characteristic function of B.References
- V. M. Adamjan and D. Z. Arov, On a class of scattering operators and characteristic operator-functions of contractions, Dokl. Akad. Nauk SSSR 160 (1965), 9–12 (Russian). MR 0174981
- V. M. Adamjan and D. Z. Arov, On scattering operators and contraction semigroups in Hilbert space, Dokl. Akad. Nauk SSSR 165 (1965), 9–12 (Russian). MR 0188808
- V. M. Adamjan and D. Z. Arov, Unitary couplings of semi-unitary operators, Mat. Issled. 1 (1966), no. vyp. 2, 3–64 (Russian). MR 0206711
- R. G. Douglas and J. William Helton, Inner dilations of analytic matrix functions and Darlington synthesis, Acta Sci. Math. (Szeged) 34 (1973), 61–67. MR 322538 C. Foiaş, On the Lax-Phillips non conservative scattering theory, J. Functional Analysis 19 (1975), 273-301.
- Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440
- P. D. Lax and R. S. Phillips, The acoustic equation with an indefinite energy form and the Schrödinger equation, J. Functional Analysis 1 (1967), 37–83. MR 0217441, DOI 10.1016/0022-1236(67)90026-2
- P. D. Lax and R. S. Phillips, Scattering theory for dissipative hyperbolic systems, J. Functional Analysis 14 (1973), 172–235. MR 0353016, DOI 10.1016/0022-1236(73)90049-9 B. Sz.-Nagy and C. Foiaş, Analyse harmonique des opérateurs de l’espace de Hilbert, Masson, Paris; Akad. Kiadó, Budapest, 1967; English rev. transl., North-Holland, Amsterdam; American Elsevier, New York; Akad. Kiadó, Budapest, 1970. MR 37 #778; 43 #947.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 223 (1976), 1-43
- MSC: Primary 47A40
- DOI: https://doi.org/10.1090/S0002-9947-1976-0428077-9
- MathSciNet review: 0428077