Inner product modules arising from compact automorphism groups of von Neumann algebras
HTML articles powered by AMS MathViewer
- by William L. Paschke
- Trans. Amer. Math. Soc. 224 (1976), 87-102
- DOI: https://doi.org/10.1090/S0002-9947-1976-0420294-7
- PDF | Request permission
Abstract:
Let M be a von Neumann algebra of operators on a separable Hilbert space H, and G a compact, strong-operator continuous group of $^\ast$-automorphisms of M. The action of G on M gives rise to a faithful, ultraweakly continuous conditional expectation of M on the subalgebra $N = \{ A \in M:g(A) = A\forall g \in G\}$, which in turn makes M into an inner product module over N. The inner product module M may be “completed” to yield a self-dual inner product module $\bar M$ over N; our most general result states that the ${W^\ast }$-algebra $A(\bar M)$ of bounded N-module maps of $\bar M$ into itself is isomorphic to a restriction of the crossed product $M \times G$ of M by G. When G is compact abelian, we give conditions for $A(\bar M)$ and $M \times G$ to be isomorphic and show, among other things, that if G acts faithfully on M, then $M \times G$ is a factor if and only if N is a factor. As an example, we discuss certain compact abelian automorphism groups of group von Neumann algebras.References
- William Arveson, On groups of automorphisms of operator algebras, J. Functional Analysis 15 (1974), 217–243. MR 0348518, DOI 10.1016/0022-1236(74)90034-2
- Robert R. Kallman, A generalization of free action, Duke Math. J. 36 (1969), 781–789. MR 256181
- William L. Paschke, Inner product modules over $B^{\ast }$-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468. MR 355613, DOI 10.1090/S0002-9947-1973-0355613-0
- Marc A. Rieffel, Induced representations of $C^{\ast }$-algebras, Advances in Math. 13 (1974), 176–257. MR 353003, DOI 10.1016/0001-8708(74)90068-1
- Marc A. Rieffel, Morita equivalence for $C^{\ast }$-algebras and $W^{\ast }$-algebras, J. Pure Appl. Algebra 5 (1974), 51–96. MR 367670, DOI 10.1016/0022-4049(74)90003-6
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- J. T. Schwartz, $W^{\ast }$-algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0232221
- Masamichi Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249–310. MR 438149, DOI 10.1007/BF02392041
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 87-102
- MSC: Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0420294-7
- MathSciNet review: 0420294