Parametric perturbation problems in ordinary differential equations
HTML articles powered by AMS MathViewer
- by Thomas G. Hallam
- Trans. Amer. Math. Soc. 224 (1976), 43-59
- DOI: https://doi.org/10.1090/S0002-9947-1976-0430434-1
- PDF | Request permission
Abstract:
The asymptotic behavior of solutions of a nonlinear differential equation that arises through a nonlinear parametric perturbation of a linear system of differential equations is discussed. Fundamental hypotheses include the admissibility of a pair of Banach spaces for the linear system. Conclusions about the behavior of the perturbed system evolve through the behavior of certain manifolds of solutions of the unperturbed linear system. Asymptotic representations are found on a semi-infinite axis ${R_ + }$ and on the real line R. The bifurcation condition, which is shown to be trivial on ${R_ + }$, plays an essential role for the perturbation problem on R. Illustrations and examples, primarily on the space ${{\text {L}}^\infty }$, of the theoretical results are presented.References
- Stephen Bancroft, Perturbations with several independent parameters, J. Math. Anal. Appl. 50 (1975), 384–414. MR 367371, DOI 10.1016/0022-247X(75)90031-1
- Stephen Bancroft and Thomas G. Hallam, Bounded solutions of nonlinear differential equations with parameters, SIAM J. Math. Anal. 6 (1975), 236–241. MR 364774, DOI 10.1137/0506023
- T. F. Bridgland Jr., On the boundedness and uniform boundedness of solutions of nonhomogeneous systems, J. Math. Anal. Appl. 12 (1965), 471–487. MR 190433, DOI 10.1016/0022-247X(65)90014-4
- Lamberto Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 16, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. MR 0118904
- Roberto Conti, On the boundedness of solutions of ordinary differential equations, Funkcial. Ekvac. 9 (1966), 23–26. MR 227518
- W. A. Coppel, On the stability of ordinary differential equations, J. London Math. Soc. 39 (1964), 255–260. MR 164094, DOI 10.1112/jlms/s1-39.1.255 —, Dichotomies and stability theory, Sympos. on Differential Equations and Dynamical Systems, Lecture Notes in Math., vol. 206, Springer-Verlag, New York, 1971, pp. 160-162.
- W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, Mass., 1965. MR 0190463
- C. Corduneanu, Sur certains systèmes différentiels non-linéaires, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I (N.S.) 6 (1960), 257–260 (English, with Romanian and Russian summaries). MR 124594
- Jack K. Hale, Oscillations in nonlinear systems, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1963. MR 0150402
- Jack K. Hale, Ordinary differential equations, Pure and Applied Mathematics, Vol. XXI, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. MR 0419901
- Thomas G. Hallam, On asymptotic equivalence of the bounded solutions of two systems of differential equations, Michigan Math. J. 16 (1969), 353–363. MR 252766
- Thomas G. Hallam and David Lowell Lovelady, On admissibility for differential equations on $R$, J. London Math. Soc. (2) 11 (1975), no. 1, 49–52. MR 427717, DOI 10.1112/jlms/s2-11.1.49
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Philip Hartman and Nelson Onuchic, On the asymptotic integration of ordinary differential equations, Pacific J. Math. 13 (1963), 1193–1207. MR 157052
- G. E. Ladas and V. Lakshmikantham, Differential equations in abstract spaces, Mathematics in Science and Engineering, Vol. 85, Academic Press, New York-London, 1972. MR 0460832 D. L. Lovelady, Admissibility criteria for Stepanoff function spaces (to appear).
- J. L. Massera and J. J. Schäffer, Linear differential equations and functional analysis. IV, Math. Ann. 139 (1960), 287–342 (1960). MR 117402, DOI 10.1007/BF01352264
- José Luis Massera and Juan Jorge Schäffer, Linear differential equations and function spaces, Pure and Applied Mathematics, Vol. 21, Academic Press, New York-London, 1966. MR 0212324
- Nicolas Minorsky, Nonlinear oscillations, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1962. MR 0137891 L. Nirenberg, Functional analysis, Lecture Notes, New York University, 1960. H. L. Royden, Real analysis, 2nd ed., Macmillian, New York, 1968.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 43-59
- MSC: Primary 34D10; Secondary 34E10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0430434-1
- MathSciNet review: 0430434