Local Fatou theorem and area theorem for symmetric spaces of rank one
HTML articles powered by AMS MathViewer
 by A. Korányi and R. B. Putz PDF
 Trans. Amer. Math. Soc. 224 (1976), 157168 Request permission
Abstract:
The classical results for the unit disc mentioned in the title are extended to harmonic functions on symmetric spaces of rank one.References

A. P. Calderón, On the behavior of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68 (1950), 4754. MR 11, 357.
 Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New YorkLondon, 1962. MR 0145455
 S. Helgason, Duality and Radon transform for symmetric spaces, Amer. J. Math. 85 (1963), 667–692. MR 158409, DOI 10.2307/2373114
 Adam Korányi, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507–516. MR 277747, DOI 10.1090/S00029947196902777470
 Adam Korányi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. Amer. Math. Soc. 140 (1969), 393–409. MR 245826, DOI 10.1090/S0002994719690245826X
 Robert Byrne Putz, A generalized area theorem for harmonic functions on hermitian hyperbolic space, Trans. Amer. Math. Soc. 168 (1972), 243–258. MR 298049, DOI 10.1090/S00029947197202980492
 Elias M. Stein, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137–174. MR 173019, DOI 10.1007/BF02545785
 E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, No. 11, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0473215
 A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, LondonNew York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Additional Information
 © Copyright 1976 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 224 (1976), 157168
 MSC: Primary 22E30; Secondary 32M15, 43A85
 DOI: https://doi.org/10.1090/S00029947197604920682
 MathSciNet review: 0492068