Some consequences of the algebraic nature of $p(e^{i\theta })$
HTML articles powered by AMS MathViewer
- by J. R. Quine
- Trans. Amer. Math. Soc. 224 (1976), 437-442
- DOI: https://doi.org/10.1090/S0002-9947-1976-0419743-X
- PDF | Request permission
Abstract:
For polynomial p of degree n, the curve $p({e^{i\theta }})$ is a closed curve in the complex plane. We show that the image of this curve is a subset of an algebraic curve of degree 2n. Using Bézout’s theorem and taking into account imaginary intersections at infinity, we show that if p and q are polynomials of degree m and n respectively, then the curves $p({e^{i\theta }})$ and $q({e^{i\theta }})$ intersect at most 2mn times. Finally, let ${U_k}$ be the set of points w, not on $p({e^{i\theta }})$, such that $p(z) - w$ has exactly k roots in $|z| < 1$. We prove that if L is a line then $L \cap {U_k}$ has at most $n - k + 1$ components in L and in particular ${U_n}$ is convex.References
- A. Cohn, Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z. 14 (1922), no. 1, 110–148 (German). MR 1544543, DOI 10.1007/BF01215894
- William Fulton, Algebraic curves. An introduction to algebraic geometry, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes written with the collaboration of Richard Weiss. MR 0313252
- Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0348781 G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, Springer-Verlag, Berlin, 1925.
- J. R. Quine, On the self-intersections of the image of the unit circle under a polynomial mapping, Proc. Amer. Math. Soc. 39 (1973), 135–140. MR 313485, DOI 10.1090/S0002-9939-1973-0313485-X B. L. van der Waerden, Modern algebra, Vol. 1, Springer, Berlin, 1930-1931; 2nd rev. ed., 1937-1940; English transl., Ungar, New York, 1949. MR 10, 587.
- Robert J. Walker, Algebraic Curves, Princeton Mathematical Series, vol. 13, Princeton University Press, Princeton, N. J., 1950. MR 0033083
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 437-442
- MSC: Primary 30A06
- DOI: https://doi.org/10.1090/S0002-9947-1976-0419743-X
- MathSciNet review: 0419743