## Natural limits for harmonic and superharmonic functions

HTML articles powered by AMS MathViewer

- by J. R. Diederich
- Trans. Amer. Math. Soc.
**224**(1976), 381-397 - DOI: https://doi.org/10.1090/S0002-9947-1976-0419796-9
- PDF | Request permission

## Abstract:

In this paper it is shown that Fatou’s theorem holds for superharmonic functions in certain Liapunov domains if mean continuous limits are used in place of nontangential limits for which Fatou’s theorem fails. Also, existence of mean continuous limits is established for certain semi-linear elliptic equations in Liapunov domains.## References

- Maynard Arsove and Alfred Huber,
*On the existence of non-tangential limits of subharmonic functions*, J. London Math. Soc.**42**(1967), 125–132. MR**203058**, DOI 10.1112/jlms/s1-42.1.125 - A. P. Calderón,
*On the behaviour of harmonic functions at the boundary*, Trans. Amer. Math. Soc.**68**(1950), 47–54. MR**32863**, DOI 10.1090/S0002-9947-1950-0032863-9 - Lennart Carleson,
*On the existence of boundary values for harmonic functions in several variables*, Ark. Mat.**4**(1962), 393–399 (1962). MR**159013**, DOI 10.1007/BF02591620 - Lennart Carleson,
*Selected problems on exceptional sets*, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0225986** - J. R. Diederich,
*Representation of superharmonic functions mean continuous at the boundary of the unit ball*, Pacific J. Math.**54**(1974), 65–70. MR**361120** - J. R. Diederich,
*Application of Serrin’s kernel parametrix to the uniqueness of $L_{1}$ solutions of elliptic equations in the unit ball*, Proc. Amer. Math. Soc.**47**(1975), 341–347. MR**355308**, DOI 10.1090/S0002-9939-1975-0355308-0 - L. L. Helms,
*Introduction to potential theory*, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1969. MR**0261018** - Richard A. Hunt and Richard L. Wheeden,
*On the boundary values of harmonic functions*, Trans. Amer. Math. Soc.**132**(1968), 307–322. MR**226044**, DOI 10.1090/S0002-9947-1968-0226044-7
J. E. Littlewood, - Walter Rudin,
*Real and complex analysis*, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR**0210528** - James Serrin,
*On the Harnack inequality for linear elliptic equations*, J. Analyse Math.**4**(1955/56), 292–308. MR**81415**, DOI 10.1007/BF02787725 - E. D. Solomencev,
*Sur les valeurs limites des fonctions sousharmoniques*, Czechoslovak Math. J.**8(83)**(1958), 520–536 (Russian, with French summary). MR**107761** - Elias M. Stein,
*On the theory of harmonic functions of several variables. II. Behavior near the boundary*, Acta Math.**106**(1961), 137–174. MR**173019**, DOI 10.1007/BF02545785 - Martin L. Silverstein and Richard L. Wheeden,
*Superharmonic functions on Lipschitz domains*, Studia Math.**39**(1971), 191–198. MR**315150**, DOI 10.4064/sm-39-2-191-198 - Elmer Tolsted,
*Limiting values of subharmonic functions*, Proc. Amer. Math. Soc.**1**(1950), 636–647. MR**39862**, DOI 10.1090/S0002-9939-1950-0039862-7 - Elmer Tolsted,
*Non-tangential limits of subharmonic functions*, Proc. London Math. Soc. (3)**7**(1957), 321–333. MR**94597**, DOI 10.1112/plms/s3-7.1.321 - Kjell-Ove Widman,
*On the boundary values of harmonic functions in $R^{3}$*, Ark. Mat.**5**(1964), 221–230 (1964). MR**201662**, DOI 10.1007/BF02591124 - Kjell-Ove Widman,
*On the boundary behavior of solutions to a class of elliptic partial differential equations*, Ark. Mat.**6**(1967), 485–533 (1967). MR**219875**, DOI 10.1007/BF02591926 - Kjell-Ove Widman,
*Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations*, Math. Scand.**21**(1967), 17–37 (1968). MR**239264**, DOI 10.7146/math.scand.a-10841

*On functions subharmonic in a circle*. II, Proc. London Math. Soc.

**28**(1928), 383-394.

## Bibliographic Information

- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**224**(1976), 381-397 - MSC: Primary 31B25
- DOI: https://doi.org/10.1090/S0002-9947-1976-0419796-9
- MathSciNet review: 0419796