Absolute Tauberian constants for Cesàro means of a function
HTML articles powered by AMS MathViewer
- by Soraya Sherif
- Trans. Amer. Math. Soc. 224 (1976), 231-242
- DOI: https://doi.org/10.1090/S0002-9947-1976-0420059-6
- PDF | Request permission
Abstract:
This paper is concerned with introducing two estimates of the forms $F \leqslant C{A_k}(\alpha ),F \leqslant D{B_k}(\alpha ),(\alpha > 0)$, where $F = \smallint _0^\infty {|d\{ f(\alpha x) - {\sigma _k}(x)\} |,{\sigma _k}(x)}$ denote the Cesàro transform of order k of the function $f(x) = \smallint _0^x {g(t)\;dt,g(t)}$ is a function of bounded variation in every finite interval of $t \geqslant 0,{A_k}(\alpha ),{B_k}(\alpha )$ are absolute Tauberian constants, $C = \smallint _0^\infty {|d\{ tg(t)\} | < \infty ,D = \smallint _0^\infty {|d\{ \phi (t)\} | < \infty } }$ and $\phi (t) = {t^{ - 1}}\smallint _0^t {ug(u)du}$. The constants ${A_k}(\alpha ),{B_k}(\alpha )$ will be determined.References
- Ralph Palmer Agnew, Integral transformations and Tauberian constants, Trans. Amer. Math. Soc. 72 (1952), 501–518. MR 47802, DOI 10.1090/S0002-9947-1952-0047802-6
- Ralph Palmer Agnew, Tauberian relations among partial sums, Riesz transforms, and Abel transforms of series, J. Reine Angew. Math. 193 (1954), 94–118. MR 64159, DOI 10.1515/crll.1954.193.94
- Hubert Delange, Sur les théorèmes inverses des procédés sommation des séries divergentes. I, Ann. Sci. École Norm. Sup. (3) 67 (1950), 99–160 (French). MR 0037374, DOI 10.24033/asens.978 M. Fekete, Vizsgálatok az absolut summabilis sorokral, alkalmázassal a Dirichletés Fourier-sorokra, Math. és Termesz. Ert. 32 (1914), 389-425.
- Soraya Sherif, Tauberian constants for general triangular matrices and certain special types of Hausdorff means, Math. Z. 89 (1965), 312–323. MR 180783, DOI 10.1007/BF01112163
- Soraya Sherif, A Tauberian constant for the $(S,\,\mu _{n+1})$ transformation, Tohoku Math. J. (2) 19 (1967), 110–125. MR 218793, DOI 10.2748/tmj/1178243311
- Soraya Sherif, Absolute Tauberian constants for Cesàro means, Trans. Amer. Math. Soc. 168 (1972), 233–241. MR 294945, DOI 10.1090/S0002-9947-1972-0294945-0
- J. B. Tatchell, A theorem on absolute Riesz summability, J. London Math. Soc. 29 (1954), 49–59. MR 57993, DOI 10.1112/jlms/s1-29.1.49
- Morris Tenenbaum, Transforms of Tauberian series by Riesz methods of different orders, Duke Math. J. 25 (1958), 181–191. MR 93670
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 231-242
- MSC: Primary 40D10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0420059-6
- MathSciNet review: 0420059