Nonimmersion of lens spaces with 2-torsion
HTML articles powered by AMS MathViewer
- by A. J. Berrick
- Trans. Amer. Math. Soc. 224 (1976), 399-405
- DOI: https://doi.org/10.1090/S0002-9947-1976-0420662-3
- PDF | Request permission
Abstract:
From a study of the equivariant unitary K-theory of the Stiefel manifold ${V_{k + 1,2}}({\mathbf {C}})$, it is shown that the lens space ${L^k}(n)$, with n a multiple of ${2^{2k - 1 - \alpha (k - 1)}}$, does not immerse in Euclidean space of dimension $4k - 2\alpha (k) - 2$.References
- M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083 A. J. Berrick, Obstructions in K-theory (to appear). A. J. Berrick, S. Feder and S. Gitler, Symmetric axial maps and embeddings of projective spaces, Bol. Soc. Mat. Mexicana (to appear).
- Donald M. Davis and Mark Mahowald, A strong nonimmersion theorem for $RP^{8l+7}$, Bull. Amer. Math. Soc. 81 (1975), 155–156. MR 405420, DOI 10.1090/S0002-9904-1975-13683-4
- S. Gitler, Immersion and embedding of manifolds, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 87–96. MR 0315726
- André Haefliger and Morris W. Hirsch, Immersions in the stable range, Ann. of Math. (2) 75 (1962), 231–241. MR 143224, DOI 10.2307/1970171
- S. G. Hoggar, On $\textrm {KO}$ theory of Grassmannians, Quart. J. Math. Oxford Ser. (2) 20 (1969), 447–463. MR 254841, DOI 10.1093/qmath/20.1.447
- I. M. James, On the immersion problem for real projective spaces, Bull. Amer. Math. Soc. 69 (1963), 231–238. MR 144355, DOI 10.1090/S0002-9904-1963-10930-1
- Tsunekazu Kambe, The structure of $K_{\Lambda }$-rings of the lens space and their applications, J. Math. Soc. Japan 18 (1966), 135–146. MR 198491, DOI 10.2969/jmsj/01820135
- Teiichi Kobayashi, Non-immersion theorems for lens spaces, J. Math. Kyoto Univ. 6 (1966), 91–108. MR 220305, DOI 10.1215/kjm/1250524451
- B. J. Sanderson and R. L. E. Schwarzenberger, Non-immersion theorems for differentiable manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 319–322. MR 148080, DOI 10.1017/s0305004100036938
- Denis Sjerve, Geometric dimension of vector bundles over lens spaces, Trans. Amer. Math. Soc. 134 (1968), 545–557. MR 233373, DOI 10.1090/S0002-9947-1968-0233373-X
- Denis Sjerve, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc. 138 (1969), 97–106. MR 238345, DOI 10.1090/S0002-9947-1969-0238345-8
- C. B. Thomas, Structures on manifolds defined by cross-sections, Math. Ann. 196 (1972), 163–170. MR 300309, DOI 10.1007/BF01419612
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 399-405
- MSC: Primary 57D40
- DOI: https://doi.org/10.1090/S0002-9947-1976-0420662-3
- MathSciNet review: 0420662