Unique factorization in modules and symmetric algebras
HTML articles powered by AMS MathViewer
- by Douglas L. Costa
- Trans. Amer. Math. Soc. 224 (1976), 267-280
- DOI: https://doi.org/10.1090/S0002-9947-1976-0422250-1
- PDF | Request permission
Abstract:
Necessary and sufficient conditions are given for a torsion-free module M over a UFD D to admit a smallest factorial module containing it. This factorial hull is $\cap {M_P}$, the intersection taken over all height one primes of D. In case M is finitely generated, the hull is ${M^{ \ast \ast }}$, the bidual of M. It is shown that if the symmetric algebra ${S_D}(M)$ admits a hull, then the hull is the smallest graded UFD containing ${S_D}(M)$. ${S_D}(M)$ is a UFD if and only if it is a factorial D-module. If M is finitely generated over D, but not necessarily torsion-free, then ${ \oplus _{i \geqslant 0}}{({S^i}(M))^{ \ast \ast }}$ is a graded UFD. Examples are given to show that any finite number of symmetric powers of M may be factorial without ${S_D}(M)$ being factorial.References
- Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. MR 0360549 D. L. Costa, Symmetric algebras and retracts, Dissertation, Univ. of Kansas, 1974.
- Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Daniel Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81–128 (French). MR 254100
- Anne-Marie Nicolas, Modules factoriels, Bull. Sci. Math. (2) 95 (1971), 33–52 (French). MR 284426
- Anne-Marie Nicolas, Extensions factorielles et modules factorables, Bull. Sci. Math. (2) 98 (1974), no. 2, 117–143 (French). MR 424788
- Pierre Samuel, Anneaux gradués factoriels et modules réflexifs, Bull. Soc. Math. France 92 (1964), 237–249 (French). MR 186702
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 267-280
- MSC: Primary 13F15
- DOI: https://doi.org/10.1090/S0002-9947-1976-0422250-1
- MathSciNet review: 0422250