Quasi-similar models for nilpotent operators
HTML articles powered by AMS MathViewer
- by C. Apostol, R. G. Douglas and C. Foiaş
- Trans. Amer. Math. Soc. 224 (1976), 407-415
- DOI: https://doi.org/10.1090/S0002-9947-1976-0425651-0
- PDF | Request permission
Abstract:
Every nilpotent operator on a complex Hilbert space is shown to be quasi-similar to a canonical Jordan model. Further, the para-reflexive operators are characterized generalizing a result of Deddens and Fillmore.References
- H. Bercovici, On the Jordan model of nilpotent operators, Private communication.
- H. Bercovici, C. Foiaş, and B. Sz.-Nagy, Compléments à l’étude des opérateurs de classe $C_{O}$. III, Acta Sci. Math. (Szeged) 37 (1975), no. 3-4, 313–322 (French). MR 394251
- F. F. Bonsall and Peter Rosenthal, Certain Jordan operator algebras and double commutant theorems, J. Functional Analysis 21 (1976), no. 2, 155–186. MR 0397433, DOI 10.1016/0022-1236(76)90075-6
- J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89–93. MR 358390, DOI 10.1016/0024-3795(75)90099-3
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- R. G. Douglas and C. Foiaş, Infinite dimensional versions of a theorem of Brickman-Fillmore, Indiana Univ. Math. J. 25 (1976), no. 4, 315–320. MR 407622, DOI 10.1512/iumj.1976.25.25027
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 407-415
- MSC: Primary 47A65
- DOI: https://doi.org/10.1090/S0002-9947-1976-0425651-0
- MathSciNet review: 0425651