Fringe families in stable homotopy
HTML articles powered by AMS MathViewer
- by Raphael S. Zahler
- Trans. Amer. Math. Soc. 224 (1976), 243-253
- DOI: https://doi.org/10.1090/S0002-9947-1976-0431160-5
- PDF | Request permission
Abstract:
It is shown how to detect and construct elements in the stable homotopy groups of spheres corresponding to the ${_i}$ family of Toda. The only tools used are Brown-Peterson cohomology and the Adams spectral sequence.References
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21–71. MR 198470, DOI 10.1016/0040-9383(66)90004-8 ; David Baird, private communication. Martin Bendersky, private communication.
- D. C. Johnson, H. R. Miller, W. S. Wilson, and R. S. Zahler, Boundary homomorphisms in the generalized Adams spectral sequence and the nontriviality of infinitely many $\gamma _{t}$ in stable homotopy, Conference on homotopy theory (Evanston, Ill., 1974) Notas Mat. Simpos., vol. 1, Soc. Mat. Mexicana, México, 1975, pp. 47–63. MR 761720 D. C. Johnson and R. S. Zahler, Detecting stable homotopy with secondary cobordism operations. II, Rutgers Univ. (preprint).
- Peter S. Landweber, Annihilator ideals and primitive elements in complex bordism, Illinois J. Math. 17 (1973), 273–284. MR 322874 J. P. May, Thesis, Princeton Univ., 1964. H. R. Miller, Thesis, Princeton Univ., 1975.
- Haynes R. Miller and W. Stephen Wilson, On Novikov’s Ext1 modulo an invariant prime ideal, Topology 15 (1976), no. 2, 131–141. MR 433434, DOI 10.1016/0040-9383(76)90002-1
- S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855–951 (Russian). MR 0221509
- Shichirô Oka, A new family in the stable homotopy groups of spheres, Hiroshima Math. J. 5 (1975), 87–114. MR 380791
- Larry Smith, On realizing complex bordism modules. Applications to the stable homotopy of spheres, Amer. J. Math. 92 (1970), 793–856. MR 275429, DOI 10.2307/2373397
- Larry Smith, On realizing complex bordism modules. Applications to the stable homotopy of spheres, Amer. J. Math. 92 (1970), 793–856. MR 275429, DOI 10.2307/2373397 —, On realizing complex bordism modules. IV, Indiana Univ. (preprint). M. C. Tangora, private communcation.
- Hirosi Toda, $p$-primary components of homotopy groups. IV. Compositions and toric constructions, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 32 (1959), 297–332. MR 111041, DOI 10.1215/kjm/1250776579
- Hirosi Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53–65. MR 271933, DOI 10.1016/0040-9383(71)90017-6
- Emery Thomas and Raphael Zahler, Generalized higher order cohomology operations and stable homotopy groups of spheres, Advances in Math. 20 (1976), no. 3, 287–328. MR 423351, DOI 10.1016/0001-8708(76)90200-0
- Raphael Zahler, The Adams-Novikov spectral sequence for the spheres, Ann. of Math. (2) 96 (1972), 480–504. MR 319197, DOI 10.2307/1970821
- Raphael Zahler, Detecting stable homotopy with secondary cobordism operations. I, Quart. J. Math. Oxford Ser. (2) 25 (1974), 213–226. MR 367998, DOI 10.1093/qmath/25.1.213
- Raphael S. Zahler, Nonrealizability of some cyclic complex bordism modules, Proc. Amer. Math. Soc. 47 (1975), 218–222. MR 362306, DOI 10.1090/S0002-9939-1975-0362306-X
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 243-253
- MSC: Primary 55E45
- DOI: https://doi.org/10.1090/S0002-9947-1976-0431160-5
- MathSciNet review: 0431160