Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces
HTML articles powered by AMS MathViewer
- by Ivar Ekeland and Gérard Lebourg
- Trans. Amer. Math. Soc. 224 (1976), 193-216
- DOI: https://doi.org/10.1090/S0002-9947-1976-0431253-2
- PDF | Request permission
Abstract:
We define a function F on a Banach space V to be locally $\varepsilon$-supported by ${u^\ast } \in {V^\ast }$ at $u \in V$ if there exists an $\eta > 0$ such that $\left \| {v - u} \right \| \leqslant \eta \Rightarrow F(v) \geqslant F(u) + \langle {u^\ast },v - u\rangle - \varepsilon \left \| {v - u} \right \|$. We prove that if the Banach space V admits a nonnegative Fréchet-differentiable function with bounded nonempty support, then, for any $> 0$ and every lower semicontinuous function F, there is a dense set of points $u \in V$ at which F is locally $\varepsilon$-supported. The applications are twofold. First, to the study of functions defined as pointwise infima; we prove for instance that every concave continuous function defined on a Banach space with Fréchet-differentiable norm is Fréchet-differentiable generically (i.e. on a countable intersection of open dense subsets). Then, to the study of optimization problems depending on a parameter $u \in V$; we give general conditions, mainly in the framework of uniformly convex Banach spaces with uniformly convex dual, under which such problems generically have a single optimal solution, depending continuously on the parameter and satisfying a first-order necessary condition.References
- Edgar Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31–47. MR 231199, DOI 10.1007/BF02391908
- Edgar Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213–216. MR 206662, DOI 10.1007/BF02771633
- J. Baranger, Existence de solutions pour des problèmes d’optimisation non convexe, J. Math. Pures Appl. (9) 52 (1973), 377–405 (1974) (French). MR 380360
- J. Baranger and R. Temam, Nonconvex optimization problems depending on a parameter, SIAM J. Control 13 (1975), 146–152. MR 0430901, DOI 10.1137/0313008 M. F. Bidaut, Théorèmes d’existence et d’existence en général d’un contrôle optimal pour des systèmes régis par des équations aux dérivées partielles non linéaires, Thèse, Université de Paris, 1973.
- N. Bourbaki, Éléments de mathématique. Part I. Les structures fondamentales de l’analyse. Livre III. Topologie générale. Chapitres I et II, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 858, Hermann & Cie, Paris, 1940 (French). MR 0004747
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094, DOI 10.1007/BFb0082079
- Michael Edelstein, Farthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171–176. MR 203426, DOI 10.1007/BF02760075
- M. Edelstein, On nearest points of sets in uniformly convex Banach spaces, J. London Math. Soc. 43 (1968), 375–377. MR 226364, DOI 10.1112/jlms/s1-43.1.375
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- Ivar Ekeland and Roger Temam, Analyse convexe et problèmes variationnels, Collection Études Mathématiques, Dunod, Paris; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974 (French). MR 0463993
- K. John and V. Zizler, Smoothness and its equivalents in weakly compactly generated Banach spaces, J. Functional Analysis 15 (1974), 1–11. MR 0417759, DOI 10.1016/0022-1236(74)90021-4 S. B. Stečkin, Caractérisation d l’approximation par des sous-ensembles d’espaces vectoriels normés, Rev. Math. Pures Appl. 8 (1963), 5-18.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 193-216
- MSC: Primary 58C20; Secondary 49B50, 46G05
- DOI: https://doi.org/10.1090/S0002-9947-1976-0431253-2
- MathSciNet review: 0431253