Duality theory for locally compact groups with precompact conjugacy classes. II. The dual space
HTML articles powered by AMS MathViewer
- by Terje Sund
- Trans. Amer. Math. Soc. 224 (1976), 313-321
- DOI: https://doi.org/10.1090/S0002-9947-1976-0439982-1
- PDF | Request permission
Abstract:
The present paper is concerned with the dual space Ĝ consisting of all unitary equivalence classes of continuous irreducible unitary representations of separable ${[FC]^ - }$ groups (i.e. groups with precompact conjugacy classes). The main purpose of the paper is to extend certain results from the duality theory of abelian groups and [Z] groups to the larger class of ${[FC]^ - }$ groups. In addition, we deal briefly with square-integrability for representations of ${[FC]^ - }$ groups. Most of our results are proved for type I groups. Our key result is that Ĝ may be written as a disjoint union of abelian topological ${T_4}$ groups, which are open in Ĝ.References
- Louis Auslander and Calvin C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. 62 (1966), 199. MR 207910
- Larry Baggett, A separable group having a discrete dual space is compact, J. Functional Analysis 10 (1972), 131–148. MR 0346090, DOI 10.1016/0022-1236(72)90045-6
- Larry Baggett and Adam Kleppner, Multiplier representations of abelian groups, J. Functional Analysis 14 (1973), 299–324. MR 0364537, DOI 10.1016/0022-1236(73)90075-x
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- Ky Fan, On local connectedness of locally compact Abelian groups, Math. Ann. 187 (1970), 114–116. MR 262414, DOI 10.1007/BF01350176
- J. M. G. Fell, A new proof that nilpotent groups are CCR, Proc. Amer. Math. Soc. 13 (1962), 93–99. MR 133404, DOI 10.1090/S0002-9939-1962-0133404-1
- J. M. G. Fell, Weak containment and induced representations of groups, Canadian J. Math. 14 (1962), 237–268. MR 150241, DOI 10.4153/CJM-1962-016-6
- James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138. MR 136681, DOI 10.1090/S0002-9947-1961-0136681-X
- Siegfried Grosser, Richard Mosak, and Martin Moskowitz, Duality and harmonic analysis on central topological groups. I, Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math. 35 (1973), 65–77. MR 0340470, DOI 10.1016/1385-7258(73)90039-5
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. MR 284541, DOI 10.1515/crll.1971.246.1
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Eberhard Kaniuth, Zur harmonischen Analyse klassenkompakter Gruppen, Math. Z. 110 (1969), 297–305 (German). MR 263992, DOI 10.1007/BF01110324
- Eberhard Kaniuth and Günter Schlichting, Zur harmonischen Analyse klassenkompakter Gruppen. II, Invent. Math. 10 (1970), 332–345 (German). MR 316973, DOI 10.1007/BF01418779
- Adam Kleppner and Ronald L. Lipsman, The Plancherel formula for group extensions. I, II, Ann. Sci. École Norm. Sup. (4) 5 (1972), 459–516; ibid. (4) 6 (1973), 103–132. MR 342641, DOI 10.24033/asens.1235
- H. Leptin, Zur harmonischen Analyse klassenkompakter Gruppen, Invent. Math. 5 (1968), 249–254 (German). MR 233936, DOI 10.1007/BF01389775
- John R. Liukkonen, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85–108. MR 318390, DOI 10.1090/S0002-9947-1973-0318390-5
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- Richard D. Mosak, The $L^{1}$- and $C^{\ast }$-algebras of $[FIA]^{-}_{B}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310. MR 293016, DOI 10.1090/S0002-9947-1972-0293016-7
- Martin Moskowitz, Homological algebra in locally compact abelian groups, Trans. Amer. Math. Soc. 127 (1967), 361–404. MR 215016, DOI 10.1090/S0002-9947-1967-0215016-3
- L. S. Pontryagin, Nepreryvnye gruppy, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1954 (Russian). 2d ed. MR 0071705
- Lewis C. Robertson, A note on the structure of Moore groups, Bull. Amer. Math. Soc. 75 (1969), 594–599. MR 245721, DOI 10.1090/S0002-9904-1969-12252-4
- I. Schochetman, Topology and the duals of certain locally compact groups, Trans. Amer. Math. Soc. 150 (1970), 477–489. MR 265513, DOI 10.1090/S0002-9947-1970-0265513-X
- Terje Sund, Duality theory for locally compact groups with precompact conjugacy classes. I. The character space, Trans. Amer. Math. Soc. 211 (1975), 185–202. MR 387490, DOI 10.1090/S0002-9947-1975-0387490-8
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 313-321
- MSC: Primary 22D35
- DOI: https://doi.org/10.1090/S0002-9947-1976-0439982-1
- MathSciNet review: 0439982