Homomorphisms of integral domains of characteristic zero
Authors:
E. Fried and J. Sichler
Journal:
Trans. Amer. Math. Soc. 225 (1977), 163-182
MSC:
Primary 18B15; Secondary 16A02
DOI:
https://doi.org/10.1090/S0002-9947-1977-0422382-9
MathSciNet review:
0422382
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Every category of universal algebras is isomorphic to a full subcategory of the category of all integral domains of characteristic zero and all their 1-preserving homomorphisms. Consequently, every monoid is isomorphic to the monoid of all 1-preserving endomorphisms of an integral domain of characteristic zero.
- E. Fried and J. Sichler, Homomorphisms of commutative rings with unit element, Pacific J. Math. 45 (1973), 485–491. MR 335489
- G. Grätzer and J. Sichler, On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math. 35 (1970), 639–647. MR 277442
- Z. Hedrlín, On endomorphisms of graphs and their homomorphic images, Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968) Academic Press, New York, 1969, pp. 73–85. MR 0256913
- Zdeněk Hedrlín and Joachim Lambek, How comprehensive is the category of semigroups?, J. Algebra 11 (1969), 195–212. MR 237611, DOI https://doi.org/10.1016/0021-8693%2869%2990054-4
- Z. Hedrlín and E. Mendelsohn, The category of graphs with a given subgraph—with applications to topology and algebra, Canadian J. Math. 21 (1969), 1506–1517. MR 260608, DOI https://doi.org/10.4153/CJM-1969-165-5
- Z. Hedrlín and A. Pultr, On full embeddings of categories of algebras, Illinois J. Math. 10 (1966), 392–406. MR 191858
- Z. Hedrlín and J. Sichler, Any boundable binding category contains a proper class of mutually disjoint copies of itself, Algebra Universalis 1 (1971), no. 1, 97–103. MR 285580, DOI https://doi.org/10.1007/BF02944963
- Luděk Kučera and Aleš Pultr, Non-algebraic concrete categories, J. Pure Appl. Algebra 3 (1973), 95–102. MR 335594, DOI https://doi.org/10.1016/0022-4049%2873%2990008-X
- Aleš Pultr, Eine Bemerkung über volle Einbettungen von Kategorien von Algebren, Math. Ann. 178 (1968), 78–82 (German). MR 230794, DOI https://doi.org/10.1007/BF01350626
- J. Sichler, Testing categories and strong universality, Canadian J. Math. 25 (1973), 370–385. MR 318258, DOI https://doi.org/10.4153/CJM-1973-038-3
Retrieve articles in Transactions of the American Mathematical Society with MSC: 18B15, 16A02
Retrieve articles in all journals with MSC: 18B15, 16A02
Additional Information
Keywords:
Integral domain,
universal algebra,
homomorphism,
concrete category,
full embedding,
binding category
Article copyright:
© Copyright 1977
American Mathematical Society