Homomorphisms of integral domains of characteristic zero
HTML articles powered by AMS MathViewer
- by E. Fried and J. Sichler
- Trans. Amer. Math. Soc. 225 (1977), 163-182
- DOI: https://doi.org/10.1090/S0002-9947-1977-0422382-9
- PDF | Request permission
Abstract:
Every category of universal algebras is isomorphic to a full subcategory of the category of all integral domains of characteristic zero and all their 1-preserving homomorphisms. Consequently, every monoid is isomorphic to the monoid of all 1-preserving endomorphisms of an integral domain of characteristic zero.References
- E. Fried and J. Sichler, Homomorphisms of commutative rings with unit element, Pacific J. Math. 45 (1973), 485–491. MR 335489, DOI 10.2140/pjm.1973.45.485
- G. Grätzer and J. Sichler, On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math. 35 (1970), 639–647. MR 277442, DOI 10.2140/pjm.1970.35.639
- Z. Hedrlín, On endomorphisms of graphs and their homomorphic images, Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968) Academic Press, New York, 1969, pp. 73–85. MR 0256913
- Zdeněk Hedrlín and Joachim Lambek, How comprehensive is the category of semigroups?, J. Algebra 11 (1969), 195–212. MR 237611, DOI 10.1016/0021-8693(69)90054-4
- Z. Hedrlín and E. Mendelsohn, The category of graphs with a given subgraph—with applications to topology and algebra, Canadian J. Math. 21 (1969), 1506–1517. MR 260608, DOI 10.4153/CJM-1969-165-5
- Z. Hedrlín and A. Pultr, On full embeddings of categories of algebras, Illinois J. Math. 10 (1966), 392–406. MR 191858, DOI 10.1215/ijm/1256054991
- Z. Hedrlín and J. Sichler, Any boundable binding category contains a proper class of mutually disjoint copies of itself, Algebra Universalis 1 (1971), no. 1, 97–103. MR 285580, DOI 10.1007/BF02944963
- Luděk Kučera and Aleš Pultr, Non-algebraic concrete categories, J. Pure Appl. Algebra 3 (1973), 95–102. MR 335594, DOI 10.1016/0022-4049(73)90008-X
- Aleš Pultr, Eine Bemerkung über volle Einbettungen von Kategorien von Algebren, Math. Ann. 178 (1968), 78–82 (German). MR 230794, DOI 10.1007/BF01350626
- J. Sichler, Testing categories and strong universality, Canadian J. Math. 25 (1973), 370–385. MR 318258, DOI 10.4153/CJM-1973-038-3
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 225 (1977), 163-182
- MSC: Primary 18B15; Secondary 16A02
- DOI: https://doi.org/10.1090/S0002-9947-1977-0422382-9
- MathSciNet review: 0422382