Strong differentiability properties of Bessel potentials
HTML articles powered by AMS MathViewer
- by Daniel J. Deignan and William P. Ziemer
- Trans. Amer. Math. Soc. 225 (1977), 113-122
- DOI: https://doi.org/10.1090/S0002-9947-1977-0422645-7
- PDF | Request permission
Abstract:
This paper is concerned with the “strong” ${L_p}$ differentiability properties of Bessel potentials of order $\alpha > 0$ of ${L_p}$ functions. Thus, for such a function f, we investigate the size (in the sense of an appropriate capacity) of the set of points x for which there is a polynomial ${P_x}(y)$ of degree $k \leqslant \alpha$ such that \[ \lim \sup \limits _{{\text {diam}}(S) \to 0} \;{({\text {diam}}\;S)^{ - k}}{\left \{ {|S{|^{ - 1}}\int {|f(y) - {P_x}(y){|^p}dy} } \right \}^{1/p}} = 0\] where, for example, S is allowed to run through the family of all oriented rectangles containing the origin.References
- David R. Adams, Maximal operators and capacity, Proc. Amer. Math. Soc. 34 (1972), 152–156. MR 350314, DOI 10.1090/S0002-9939-1972-0350314-1
- Thomas Bagby and William P. Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129–148. MR 344390, DOI 10.1090/S0002-9947-1974-0344390-6 H. Busemann and W. Feller, Zur differentiation der Lebesgueschen Integrale, Fund. Math. 22 (1934), 226-256.
- A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, DOI 10.4064/sm-20-2-181-225 Daniel J. Deignan, Boundary regularity of weak solutions to a quasilinear parabolic equation, Doctoral Dissertation, Indiana University, 1974.
- Herbert Federer and William P. Ziemer, The Lebesgue set of a function whose distribution derivatives are $p$-th power summable, Indiana Univ. Math. J. 22 (1972/73), 139–158. MR 435361, DOI 10.1512/iumj.1972.22.22013
- Ronald Gariepy and William P. Ziemer, Behavior at the boundary of solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 56 (1974/75), 372–384. MR 355332, DOI 10.1007/BF00248149 B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234.
- Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292 (1971). MR 277741, DOI 10.7146/math.scand.a-10981
- Norman G. Meyers, Taylor expansion of Bessel potentials, Indiana Univ. Math. J. 23 (1973/74), 1043–1049. MR 348482, DOI 10.1512/iumj.1974.23.23085
- Anthony P. Morse, Perfect blankets, Trans. Amer. Math. Soc. 61 (1947), 418–442. MR 20618, DOI 10.1090/S0002-9947-1947-0020618-0
- N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243–278. MR 440268, DOI 10.1007/BF02383650 S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math. 22 (1934), 257-261.
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 A. Zygmund, On the differentiability of multiple integrals, Fund. Math. 23 (1934), 143-149. —, Trigonometric series, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 225 (1977), 113-122
- MSC: Primary 31B15
- DOI: https://doi.org/10.1090/S0002-9947-1977-0422645-7
- MathSciNet review: 0422645