Stability in Witt rings
HTML articles powered by AMS MathViewer
- by Thomas C. Craven
- Trans. Amer. Math. Soc. 225 (1977), 227-242
- DOI: https://doi.org/10.1090/S0002-9947-1977-0424800-9
- PDF | Request permission
Abstract:
An abstract Witt ring R is defined to be a certain quotient of an integral group ring for a group of exponent 2. The ring R has a unique maximal ideal M containing 2. A variety of results are obtained concerning n-stability, the condition that ${M^{n + 1}} = 2{M^n}$, especially its relationship to the ring of continuous functions from the space of minimal prime ideals of R to the integers. For finite groups, a characterization of integral group rings is obtained in terms of n-stability. For Witt rings of formally real fields, conditions equivalent to n-stability are given in terms of the real places defined on the field.References
- Ron Brown, An approximation theorem for extended prime spots, Canadian J. Math. 24 (1972), 167–184. MR 292802, DOI 10.4153/CJM-1972-015-3
- Ron Brown, Real places and ordered fields, Rocky Mountain J. Math. 1 (1971), no. 4, 633–636. MR 285512, DOI 10.1216/RMJ-1971-1-4-633
- Ron Brown, Superpythagorean fields, J. Algebra 42 (1976), no. 2, 483–494. MR 427286, DOI 10.1016/0021-8693(76)90109-5
- Thomas C. Craven, The Boolean space of orderings of a field, Trans. Amer. Math. Soc. 209 (1975), 225–235. MR 379448, DOI 10.1090/S0002-9947-1975-0379448-X
- Richard Elman and T. Y. Lam, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math. 94 (1972), 1155–1194. MR 314878, DOI 10.2307/2373568
- Richard Elman, Tsit Yuen Lam, and Alexander Prestel, On some Hasse principles over formally real fields, Math. Z. 134 (1973), 291–301. MR 330045, DOI 10.1007/BF01214693
- Burton W. Jones, The Arithmetic Theory of Quadratic Forms, Carcus Monograph Series, no. 10, Mathematical Association of America, Buffalo, N.Y., 1950. MR 0037321, DOI 10.5948/UPO9781614440109
- Manfred Knebusch, On the extension of real places, Comment. Math. Helv. 48 (1973), 354–369. MR 337912, DOI 10.1007/BF02566128
- Manfred Knebusch, Alex Rosenberg, and Roger Ware, Signatures on semilocal rings, J. Algebra 26 (1973), 208–250. MR 327761, DOI 10.1016/0021-8693(73)90021-5
- Manfred Knebusch, Alex Rosenberg, and Roger Ware, Structure of Witt rings and quotients of Abelian group rings, Amer. J. Math. 94 (1972), 119–155. MR 296103, DOI 10.2307/2373597
- Manfred Knebusch, Alex Rosenberg, and Roger Ware, Structure of Witt rings, quotients of abelian group rings, and orderings of fields, Bull. Amer. Math. Soc. 77 (1971), 205–210. MR 271091, DOI 10.1090/S0002-9904-1971-12683-6
- Serge Lang, The theory of real places, Ann. of Math. (2) 57 (1953), 378–391. MR 53924, DOI 10.2307/1969865
- John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR 0506372, DOI 10.1007/978-3-642-88330-9
- A. Prestel, Quadratische Semi-Ordnungen und quadratische Formen, Math. Z. 133 (1973), 319–342 (German). MR 337913, DOI 10.1007/BF01177872
- Roger Ware, When are Witt rings group rings?, Pacific J. Math. 49 (1973), 279–284. MR 332654, DOI 10.2140/pjm.1973.49.279
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 225 (1977), 227-242
- MSC: Primary 13K05; Secondary 13A15
- DOI: https://doi.org/10.1090/S0002-9947-1977-0424800-9
- MathSciNet review: 0424800