Critical groups having central monoliths of a nilpotent by abelian product variety of groups
HTML articles powered by AMS MathViewer
- by James J. Woeppel
- Trans. Amer. Math. Soc. 225 (1977), 155-161
- DOI: https://doi.org/10.1090/S0002-9947-1977-0424942-8
- PDF | Request permission
Abstract:
Let $\mathfrak {N}$ be a variety of groups which has nilpotency class two and finite odd exponent. Let $\mathfrak {A}$ be an abelian variety of groups with finite exponent relatively prime to the exponent of $\mathfrak {N}$. The existence in the product variety $\mathfrak {N}\mathfrak {A}$ of nonnilpotent critical groups having central monoliths is established. The structure of these critical groups is studied. This structure is shown to depend on an invariant, k. The join-irreducible subvariety of $\mathfrak {N}\mathfrak {A}$ generated by the nonnilpotent critical groups of $\mathfrak {N}\mathfrak {A}$ having central monoliths is determined, in particular, for k odd.References
- R. G. Burns, Verbal wreath products and certain product varieties of groups, J. Austral. Math. Soc. 7 (1967), 356–374. MR 0217158, DOI 10.1017/S1446788700004195 —, Some applications of wreath products of groups, Ph.D. Thesis, Austral. National Univ., Canberra, Australia, 1966.
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899, DOI 10.1007/978-3-642-88599-0
- M. F. Newman, On a class of metabelian groups, Proc. London Math. Soc. (3) 10 (1960), 354–364. MR 117293, DOI 10.1112/plms/s3-10.1.354
- D. R. Taunt, On $A$-groups, Proc. Cambridge Philos. Soc. 45 (1949), 24–42. MR 27759, DOI 10.1017/s0305004100000414
- James J. Woeppel, Join-irreducible cross product varieties of groups, Trans. Amer. Math. Soc. 200 (1974), 141–148. MR 364451, DOI 10.1090/S0002-9947-1974-0364451-5
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 225 (1977), 155-161
- MSC: Primary 20E10
- DOI: https://doi.org/10.1090/S0002-9947-1977-0424942-8
- MathSciNet review: 0424942