ABSTRACT. We formulate a definition of symmetric derivatives of odd order for functions of two variables. Our definition is based on expanding in a Taylor's series a weighted average of the function about circles.

The definition is applied to derive results on Lebesgue summability for spherically convergent double trigonometric series.

1. Let \(f(t) \) be a function defined in a neighborhood of \(t_0 \in \mathbb{R} \). Let \(k \) be a natural number. We say that \(f \) has at \(t_0 \) a \(k \)th symmetric derivative with value \(a_k \) if the following holds:

If \(k = 2r \) is even,

\[
\frac{1}{2\pi} \left(f(t_0 + t) + f(t_0 - t) \right) = a_0 + \frac{a_2}{2!} t^2 + \cdots + \frac{a_{2r}}{(2r)!} t^{2r} + o(t^{2r})
\]
as \(t \to 0 \).

If \(k = 2r + 1 \) is odd,

\[
\frac{1}{2\pi} \left(f(t_0 + t) - f(t_0 - t) \right) = a_1 t + \frac{a_3}{3!} t^3 + \cdots + \frac{a_{2r+1}}{(2r+1)!} t^{2r+1} + o(t^{2r+1})
\]
as \(t \to 0 \).

If the limit in (1.1) or (1.2) exists only as \(t \to 0 \) through a set having 0 as a point of density, then we say \(f \) has a \(k \)th symmetric approximate derivative at \(t_0 \) equal to \(a_k \).

These definitions may be found in [7]. They have the following applications to termwise integrated trigonometric series. Let \(T: \sum_{n \in \mathbb{Z}} c_n e^{in\theta} \) be a trigonometric series in one variable.

Theorem A. If \(c_n \to 0 \) and \(T \) converges at \(\theta_0 \) to \(s \), then the function

\[
F(\theta) = \frac{c_0}{2} \theta^2 - \sum c_n \frac{e^{in\theta}}{n^2}
\]

has at \(\theta_0 \) a second symmetric derivative with value \(s \).
Theorem B. If \(c_n \to 0 \) and \(T \) converges at \(\theta_0 \) to a finite sum \(s \) then the function

\[
L(\theta) = c_0 \theta + \sum_{n} c_n e^{i n \theta}
\]

has at \(\theta_0 \) a first symmetric approximate derivative with value \(s \).

We are concerned in this paper with functions of two variables. We denote points of \(\mathbb{F}_2 \) by \(x = (x_1, x_2) = t e^{i \theta} \), and we write integral lattice points \(n = (n_1, n_2) \). We set \(n \cdot x = n_1 x_1 + n_2 x_2 \). We denote the Fourier series of a function \(F \) by \(S[F] \).

Suppose \(F(x) \) is defined in a neighborhood of \(x_0 \in \mathbb{F}_2 \). We say that \(F \) has at \(x_0 \) an \(r \)th generalized Laplacian equal to \(s \) if \(F \) is integrable over each circle \(|x-x_0| = t \), for \(t \) small, and if

\[
\frac{1}{2\pi} \int_{0}^{2\pi} F(x_0 + te^{i \theta}) d\theta = a_0 + \frac{a_2}{2!} t^2 + \cdots + \frac{s}{(2^r r!)^2} t^{2r} + o(t^{2r})
\]
as \(t \to 0 \). This definition is due to V. Shapiro [4] and forms a two dimensional analogue of (1.1) for symmetric derivatives of even order. In [3] and [4], it is used to establish two dimensional analogues of Theorem A.

The purpose of this paper is to give a two dimensional analogue of (1.2) for symmetric derivatives of odd order, and to apply it to Lebesgue summability for double trigonometric series.

2. We make the following definition. Let

\[
\Omega(\theta) = \cos \theta + \sin \theta.
\]

Let \(F(x) \) be defined in a neighborhood of \(x_0 \in \mathbb{F}_2 \), and suppose that \(F \) is integrable on each circle \(|x-x_0| = t \), for \(t \) small. Let \(k = 2r + 1 \) be an odd integer.

Definition. \(F \) has at \(x_0 \) a generalized symmetric derivative of order \(2r + 1 \) with value \(s \) if

\[
\frac{1}{2\pi} \int_{0}^{2\pi} F(x_0 + te^{i \theta}) \Omega(\theta) d\theta = a_1 t + a_3 t^3 + \cdots + \frac{s}{2^{2r+1} r! (r+1)!} t^{2r+1} + o(t^{2r+1}),
\]
as \(t \to 0 \).

If the limit in (2.1) exists only as \(t \) tends to 0 through a set \(E \) having 0 as a point of density, we will say \(F \) has at \(x_0 \) a generalized symmetric approximate derivative equal to \(s \).

3. The numerical value of the derivative is given by the following result.

Theorem 1. Suppose that \(F(x) \) and all partial derivatives of \(F \) of order
\[s = \left(\frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} \right) \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) F(x_0). \]

Proof. We may assume \(x_0 = 0 \). We apply Taylor's theorem. We write

\[
F(t e^{i\theta}) = \sum_{j=0}^{2r+1} \frac{1}{j!} \left(t \cos \theta \frac{\partial}{\partial x_1} + t \sin \theta \frac{\partial}{\partial x_2} \right)^j \frac{\partial^j}{\partial x_1^j} \left(\frac{\partial^j}{\partial x_2^j} \right) F(0)
\]

\[
+ \frac{1}{(2r+2)!} \left(t \cos \theta \frac{\partial}{\partial x_1} + t \sin \theta \frac{\partial}{\partial x_2} \right)^{2r+2} F(\mu e^{i\theta}),
\]

for some \(\mu \in (0, t) \).

\[
\frac{1}{2\pi} \int_0^{2\pi} F(t e^{i\theta}) \Omega(\theta) d\theta
\]

\[
= \sum_{j=0}^{2r+1} \frac{1}{j!} \int_0^{2\pi} \left(\cos \theta \frac{\partial}{\partial x_1} + \sin \theta \frac{\partial}{\partial x_2} \right)^j \frac{\partial^j}{\partial x_1^j} \left(\frac{\partial^j}{\partial x_2^j} \right) F(0) \Omega(\theta) d\theta
\]

\[
+ \frac{1}{(2r+2)!} \int_0^{2\pi} \left(\cos \theta \frac{\partial}{\partial x_1} + \sin \theta \frac{\partial}{\partial x_2} \right)^{2r+2} F(\mu e^{i\theta}) \Omega(\theta) d\theta
\]

\[
= \sum_{j=0}^{2r+1} a_j t^j + R_{2r+2}
\]

where

\[
a_j = \frac{1}{j!} \int_0^{2\pi} \sum_{m=0}^j \binom{j}{m} F(m, j - m) \cdot \cos^m \theta \sin^{j-m} \theta \Omega(\theta) d\theta
\]

Clearly \(a_j = 0 \) when \(j \) is even.

When \(j \) is odd,

\[
a_j = \frac{1}{j!} \sum_{m=0}^j \binom{j}{m} F(m, j - m) \cdot \frac{1}{2\pi} \int_0^{2\pi} \cos^m \theta \sin^{j-m} \theta \Omega(\theta) d\theta
\]

\[
= \frac{1}{j!} \sum_{m=0}^j \binom{j}{m} F(m, j - m) \left\{ \frac{1}{2\pi} \int_0^{2\pi} \cos^m \theta \sin^{j-m-1} \theta d\theta \right\}
\]

\[
+ \frac{1}{2\pi} \int_0^{2\pi} \cos^m \theta \sin^{j-m+1} \theta d\theta
\]

\[
= \frac{1}{j!} \sum_{m=0}^j \binom{j}{m} F(m, j - m) \{ c_{jm} + d_{jm} \}.
\]
Using reduction formulae we find,
\[
c_{jm} = \begin{cases}
\frac{m!(j-m)!}{2^j((j+1)/2)!((m-1)/2)!(j-m/2)!} & \text{if } m \text{ is odd,} \\
0 & \text{if } m \text{ is even,}
\end{cases}
\]
and
\[
d_{jm} = \begin{cases}
0 & \text{if } m \text{ is odd,} \\
\frac{m!(j-m+1)!}{2^{j+1}((j+1)/2)!((j-m+1)/2)!(m/2)!} & \text{if } m \text{ is even.}
\end{cases}
\]

Breaking the sum in (3.2) into two parts,

\[
(3.3)
\]

\[
a_j = \sum_{m=0; m \text{ odd}}^{j} \frac{1}{j!} \binom{j}{m} \frac{m!(j-m)!}{2^j((j+1)/2)!((m-1)/2)!(j-m/2)!} F(m,j-m)
\]

\[
+ \sum_{m=0; m \text{ even}}^{j} \frac{1}{j!} \binom{j}{m} \frac{m!(j-m+1)!}{2^{j+1}((j+1)/2)!((j-m+1)/2)!(m/2)!} F(m,j-m)
\]

\[= I + II.
\]

To simplify I, set \(s = (m-1)/2\).

\[
(3.4)
\]

\[
I = \frac{1}{2^j((j+1)/2)!} \sum_{s=0}^{(j-1)/2} \frac{1}{s!((j-1)/2-s)!} F(2s+1,j-2s-1)
\]

\[
= \frac{1}{2^j((j+1)/2)!((j-1)/2)!} \left(\sum_{s=0}^{(j-1)/2} \binom{j-1}{s} \right) F(2s+1,j-2s-1)
\]

\[
= \frac{1}{2^j((j+1)/2)!((j-1)/2)!} \frac{\partial}{\partial x_1} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right)^{(j-1)/2} F(0).
\]

To simplify II, set \(s = m/2\).

\[
II = \sum_{m=0; m \text{ even}}^{j} \frac{j-m+1}{2 \cdot 2^j((j+1)/2)!((j-m+1)/2)!(m/2)!} F(m,j-m)
\]

\[
= \sum_{m=0; m \text{ even}}^{j} \frac{1}{2^j((j+1)/2)!((j-m-1)/2)!} F(m,j-m)
\]

\[
= \frac{1}{2^j((j+1)/2)!} \sum_{s=0}^{(j-1)/2} \frac{1}{((j-1)/2-s)!} F(2s,j-2s)
\]

\[
= \frac{1}{2^j((j+1)/2)!((j-1)/2)!} \frac{\partial}{\partial x_2} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right)^{(j-1)/2} F(0).
\]

Combining (3.4) and (3.5), we get
For the remainder term,
\begin{equation}
R_{2r+2} = t^{2r+2} O(1) = o(t^{2r+1}).
\end{equation}
Substituting (3.6) and (3.7) into (3.1), the proof of Theorem 1 is complete.

4. We now apply the definition in (2.1) to deduce two dimensional versions of Lebesgue summability for spherically convergent double trigonometric series. The role of (2.1) in the extension of Theorem B to two dimensions is parallel to the role played by generalized Laplacians in the extension of Theorem A to two dimensions. Our proof is similar to the methods used in [5], where a different multi-dimensional analogue of Theorem B is given.

Theorem 2. Let \(T: \sum_{n \in \mathbb{Z}^2} c_n e^{i n \cdot x} \) be a double trigonometric series which converges spherically at \(x_0 \) to \(s \), \(s < \infty \). Suppose the coefficients of \(T \) satisfy
\begin{equation}
\sum_{n_1+n_2=0} |n|^\alpha c_n|^2 + \sum_{n_1+n_2 \neq 0} |n|^\alpha (n_1 + n_2)^{-2} |c_n|^2 < \infty,
\end{equation}
for some number \(\alpha > 1 \). Then the series
\begin{equation}
\sum_{n_1+n_2=0} \frac{1}{2}(x_1 + x_2) c_n e^{i n \cdot x} + \sum_{n_1+n_2 \neq 0} \frac{-i c_n}{n_1 + n_2} e^{i n \cdot x}
\end{equation}
converges spherically a.e. on \(T^2 \) to a function \(L(x) \) which has at \(x_0 \) a first generalized symmetric approximate derivative equal to \(s \).

Theorem 3. Suppose \(\sum_{n \in \mathbb{Z}^2} c_n e^{i n \cdot x} \) converges spherically at \(x_0 \) to \(s \), \(s < \infty \). Suppose there are functions \(L_1(x) \) and \(L_2(x) \) such that
\begin{equation}
\sum_{n_1+n_2=0} c_n e^{i n \cdot x} = S[L_1]
\end{equation}
and
\begin{equation}
\sum_{n_1+n_2 \neq 0} \frac{-i c_n}{n_1 + n_2} e^{i n \cdot x} = S[L_2].
\end{equation}
Let \(L(x) = \frac{1}{2}(x_1 + x_2) L_1(x) + L_2(x) \). Then \(L(x) \) has at \(x_0 \) a first generalized symmetric approximate derivative with value \(s \).

5. Before starting the proofs of Theorems 2 and 3 we establish the following result. Here \(J_\nu(z) \) represents the Bessel function of the first kind of order \(\nu \).
\begin{equation}
J_\nu(z) = \frac{1}{\pi i} \int_0^{\pi} e^{iz \cos \varphi} \cos (\nu \varphi) d\varphi.
\end{equation}

Lemma. Let \(x = te^{i \theta} \in E_2 \) and let \(n = (n_1, n_2) \in \mathbb{Z}^2 \), with \(|n| \neq 0 \). Define
\[g_n(x) = \begin{cases} \frac{-ie^{jn_1x}}{n_1 + n_2} & \text{if } n_1 + n_2 \neq 0, \\ \frac{1}{2}(x_1 + x_2)e^{jn_1x} & \text{if } n_1 + n_2 = 0. \end{cases} \]

Then
\[
\frac{1}{2\pi} \int_0^{2\pi} g_n(e^{i\theta})\Omega(\theta) \, d\theta = J_1(|n|t) \frac{|n|}{|n|}. \]

Proof. Let \(n_1/|n| = \cos \varphi, \ n_2/|n| = \sin \varphi. \)

We first consider \(g_n(x) \) for \(n_1 + n_2 \neq 0. \)

\[
\frac{1}{2\pi} \int_0^{2\pi} g_n(e^{i\theta})\Omega(\theta) \, d\theta
= \frac{|n|}{(n_1 + n_2)^2} \cdot \frac{1}{2\pi i} \int_0^{2\pi} \exp \left\{ i|n| \left(\frac{n_1}{|n|} \cos \theta + \frac{n_2}{|n|} \sin \theta \right) \right\}
\cdot (\cos \theta + \sin \theta) \left(\frac{n_1}{|n|} + \frac{n_2}{|n|} \right) \, d\theta
\]

\[
= \frac{|n|}{(n_1 + n_2)^2} \cdot \frac{1}{2\pi} \int_0^{2\pi} e^{i|n|\cos(\theta - \varphi)} (\cos (\theta - \varphi) + \sin (\theta + \varphi)) \, d\theta
\]

\[
= \frac{|n|}{(n_1 + n_2)^2} \cdot \frac{1}{2\pi} \int_0^{2\pi} e^{i|n|\cos(\theta - \varphi)} \cos (\theta - \varphi) \, d\theta
\]

\[
+ \frac{|n|}{(n_1 + n_2)^2} \cdot \frac{1}{2\pi} \int_0^{2\pi} e^{i|n|\cos(\theta - \varphi)} \sin (\theta + \varphi) \, d\theta
\]

\[
= A_1 + B_1.
\]

\[
A_1 = \frac{|n|}{(n_1 + n_2)^2} J_1(|n|t).
\]

Let \(\mu = \theta - \varphi. \)

\[
B_1 = \frac{|n|}{(n_1 + n_2)^2} \frac{1}{2\pi i} \int_0^{2\pi} e^{i|n|\cos \mu} \sin (\mu + 2\varphi) \, d\mu
\]

\[
= \frac{|n|}{(n_1 + n_2)^2} \cos 2\varphi \frac{1}{2\pi i} \int_0^{2\pi} e^{i|n|\cos \mu} \sin \mu \, d\mu
\]

\[
+ \frac{|n|}{(n_1 + n_2)^2} \sin 2\varphi \frac{1}{2\pi i} \int_0^{2\pi} e^{i|n|\cos \mu} \cos \mu \, d\mu
\]

\[
= 0 + \frac{|n|}{(n_1 + n_2)^2} \sin (2\varphi) J_1(|n|t) = \frac{|n|}{(n_1 + n_2)^2} \frac{2n_1n_2}{|n|^2} J_1(|n|t). \]
Combining,

\[\frac{1}{2\pi} \int_0^{2\pi} g_n(te^{i\theta})\Omega(\theta) \, d\theta \]

\[= A_1 + B_1 = \left(1 + \frac{2n_1 n_2}{|n|^2}\right) \frac{|n|}{(n_1 + n_2)^2} J_1(|n|) = \frac{J_1(|n|)}{|n|}. \]

In the case \(n_1 + n_2 = 0 \),

\[\frac{1}{2\pi} \int_0^{2\pi} g_n(te^{i\theta})\Omega(\theta) \, d\theta \]

\[= \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{2}(t \cos \theta + t \sin \theta)e^{i|n|\cos(\theta - \varphi)} \, d\theta \]

\[= \frac{t}{4\pi} \int_0^{2\pi} \cos \theta \sin \theta e^{i|n|\cos(\theta - \varphi)} \, d\theta \]

\[= \frac{t}{4\pi} \int_0^{2\pi} e^{i|n|\cos(\theta - \varphi)} \, d\theta + \frac{t}{4\pi} \int_0^{2\pi} 2 \cos \theta \sin \theta e^{i|n|\cos(\theta - \varphi)} \, d\theta \]

\[= A_2 + B_2. \]

\[A_2 = \frac{1}{2} \tau_0(|n|). \]

\[B_2 = \frac{t}{4\pi} \int_0^{2\pi} \sin 2(\mu + \varphi)e^{i|n|\cos \mu} \, d\mu \]

\[= \cos (2\varphi) \frac{t}{4\pi} \int_0^{2\pi} \sin (2\mu)e^{i|n|\cos \mu} \, d\mu \]

\[+ \sin (2\varphi) \frac{t}{4\pi} \int_0^{2\pi} \cos (2\mu)e^{i|n|\cos \mu} \, d\mu \]

\[= 0 - \sin (-\pi/2) \frac{1}{2} \tau_2(|n|) = \frac{1}{2} \tau_2(|n|). \]

Combining \(A_2 \) and \(B_2 \),

\[\frac{1}{2\pi} \int_0^{2\pi} g_n(te^{i\theta})\Omega(\theta) \, d\theta = \frac{1}{2} \left(\tau_0(|n|) + \tau_2(|n|) \right) = \frac{J_1(|n|)}{|n|} \]

by a formula from [1, p. 12]. Thus the proof of the Lemma is complete.

6. Proof of Theorem 3. We will assume, as we may, that \(x_0 = 0 \) and \(s = 0 \). We must show

\[\lim_{t \to 0} \frac{1}{2\pi t} \int_0^{2\pi} L(te^{i\theta})\Omega(\theta) \, d\theta = 0. \]

Set

\[\text{...} \]
\[L_1(x, r) = \sum_{n_1 + n_2 = 0} c_n e^{in \cdot x} e^{-|n|r}, \]
\[L_2(x, r) = \sum_{n_1 + n_2 \neq 0} \frac{-ic_n}{n_1 + n_2} e^{in \cdot x} e^{-|n|r} \]

and let \(L(x, r) = \frac{1}{2} (x_1 + x_2) L_1(x, r) + L_2(x, r) \). Using results found in [6], for example, we obtain

\[
\lim_{r \to 0} \int_{T_2} |L(x) - L(x, r)| \, dx \\
\leq \lim_{r \to 0} \int_{T_2} |L_1(x) - L_1(x, r)| \, dx + \lim_{r \to 0} \int_{T_2} |L_2(x) - L_2(x, r)| \, dx \\
= 0.
\]

Choose a sequence \(\mu_k \) decreasing to 0 such that

\[
\int_{T_2} |L(x) - L(x, \mu_k)| \, dx \leq 2^{-3k-1}.
\]

Let

\[
C_k = \left\{ t \in (0, 1) \mid \int_0^{2\pi} |L(te^{it\theta}) - L(te^{it\theta}, \mu_k)| \, d\theta > 2^{-k} \right\}.
\]

Then

\[
2^{-3k-1} \geq \int_0^1 t \, dt \int_0^{2\pi} |L(te^{it\theta}) - L(te^{it\theta}, \mu_k)| \, d\theta \\
\geq \int_{C_k} t2^{-k} \, dt > \int_0^{C_k} t2^{-k} \, dt \\
= 2^{-k-1} |C_k|^2.
\]

Hence, \(|C_k| \leq 2^{-k} \). Thus if we let

\[
T = (0, 1) - \bigcap_{n=1}^{\infty} \bigcup_{k \geq n} C_k,
\]

then \(|T| = 0 \) and, outside of \(T \),

\[
\lim_{k \to \infty} \int_0^{2\pi} |L(te^{it\theta}) - L(te^{it\theta}, \mu_k)| \, d\theta = 0,
\]

so

\[
\lim_{k \to \infty} \int_0^{2\pi} |L(te^{it\theta})\Omega(\theta) - L(te^{it\theta}, \mu_k)\Omega(\theta)| \, d\theta = 0.
\]

Thus, for almost all \(t \in (0, 1) \),

\[
(6.1) \quad \lim_{k \to \infty} \frac{1}{2\pi} \int_0^{2\pi} L(te^{it\theta}, \mu_k)\Omega(\theta) \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} L(te^{it\theta})\Omega(\theta) \, d\theta.
\]

For \(t \in (0, 1) \), define
(6.2) \[\varphi(t) = \lim_{k \to \infty} \frac{1}{2\pi} \int_0^{2\pi} L(te^{i\theta}, \mu_k) \Omega(\theta) \, d\theta. \]

Then, applying the Lemma,

\[\varphi(t) = \lim_{k \to \infty} \frac{1}{2\pi} \int_0^{2\pi} \lim_{R \to \infty} \left(\sum_{|n| < R} c_n s_n(te^{i\theta}) e^{-|n|\mu_k} \right) \cdot \Omega(\theta) \, d\theta \]

(6.3) \[= \lim_{k \to \infty} \lim_{R \to \infty} \sum_{|n| < R} t^{-1} c_n \cdot \frac{1}{2\pi} \int_0^{2\pi} s_n(te^{i\theta}) \Omega(\theta) \, d\theta e^{-|n|\mu_k} \]

\[= \lim_{k \to \infty} \lim_{R \to \infty} \sum_{|n| < R} c_n \frac{J_1(|n|t)}{|n|t} e^{-|n|\mu_k}. \]

Let \(S_u = \sum_{|n| < u} c_n \). Then, summing by parts,

\[\sum_{|n| < R} c_n \frac{J_1(|n|t)}{|n|t} e^{-|n|\mu_k} \]

(6.4) \[= - \int_0^R S_u \frac{d}{du} \left(\frac{J_1(ut)}{ut} e^{-up_k} \right) \, du + S_R \frac{J_1(Rt)}{Rt} e^{-R\mu_k}. \]

Since \(S_R = o(1) \) as \(R \to \infty \), and using the identity \(d(t^{-\nu}J_\nu(t))/dt = -t^{-\nu}J_{\nu+1}(t) \), we get

\[S_R \frac{J_1(Rt)}{Rt} e^{-R\mu_k} \to 0 \]

as \(R \to \infty \). Hence the last term on the right side of (6.4) drops out, and

\[\lim_{R \to \infty} \sum_{|n| < R} c_n \frac{J_1(|n|t)}{|n|t} e^{-|n|\mu_k} \]

\[= - \int_0^\infty S_u \frac{d}{du} \left(\frac{J_1(ut)}{ut} e^{-up_k} \right) \, du \]

\[= - \int_0^\infty S_u \left\{ \frac{J_2(ut)}{u} e^{-up_k} - \mu_k \frac{J_1(ut)}{ut} e^{-up_k} \right\} \, du. \]

Returning to (6.3),

\[\varphi(t) = - \lim_{k \to \infty} \int_0^\infty S_u \frac{J_2(ut)}{u} e^{-up_k} \, du + \lim_{k \to \infty} \mu_k \int_0^\infty S_u \frac{J_1(ut)}{ut} e^{-up_k} \, du \]

\[= - \lim_{k \to \infty} \int_0^\infty S_u \frac{J_2(ut)}{u} e^{-up_k} \, du. \]

We claim

(6.5) \[\int_{\rho}^{2\rho} |\varphi(t)| \, dt = o(\rho) \quad \text{as} \quad \rho \to 0. \]
For,
\[
\int_{2}^{2^p} |\varphi(t)| \, dt = \int_{2}^{2^p} \left| \lim_{k \to \infty} \int_{0}^{\infty} S_u \frac{J_2(ut)}{u} e^{-u^p} \, du \right| \, dt
\]
\[
\leq \int_{2}^{2^p} \int_{0}^{\infty} \left| S_u \frac{J_2(ut)}{u} \right| \, du \, dt = \int_{2}^{2^p} \int_{0}^{\infty} \left| S_u \frac{J_2(ut)}{u} \right| \, dt \, du
\]
\[
= \int_{0}^{2^p} \int_{2}^{2^p} \left| S_u \frac{J_2(ut)}{u} \right| \, dt \, du + \int_{2^p}^{\infty} \int_{2}^{2^p} \left| S_u \frac{J_2(ut)}{u} \right| \, dt \, du
\]
\[
= P + Q.
\]

We use the relations \(|J_\rho(t)| \leq c t^\rho\) for \(0 < t < 2\), and \(|J_\rho(t)| \leq c t^{-1/2}\) for \(t > 1\).

In the interval of integration involving \(P\), \(|ut| \leq 2\), so \(|u^{-1} J_2(ut)| \leq c u^2\).

\[
P = \int_{0}^{2^p} \int_{2}^{2^p} o(1) O(u^2) \, dt \, du = o(p).
\]

In the interval of integration for \(Q\), \(ut > 1\), so \(|J_2(ut)| \leq c(ut)^{-1/2}\).

\[
Q = \int_{2^p}^{\infty} \int_{2}^{2^p} o(1) u^{-1} O(u t)^{-1/2} \, dt \, du = o(p).
\]

Thus the claim is established.

We complete the proof of Theorem 2 as follows. Let

\[
(6.6) \quad \int_{2-\epsilon_n}^{2} |\varphi(t)| \, dt = 2^{-n} \epsilon_n,
\]

where \(\epsilon_n \to 0\) as \(n \to \infty\). Let \(E_n = \{t \in [2^{-n-1}, 2^{-n}]: |\varphi(t)| > \sqrt{\epsilon_n}\}\). Then

\[
\int_{2-\epsilon_n}^{2} |\varphi(t)| \, dt \geq |E_n| \sqrt{\epsilon_n},
\]

so using (6.6), \(2^{-n} \epsilon_n \geq \sqrt{\epsilon_n} |E_n|\), and \(|E_n| \leq 2^{-n} \sqrt{\epsilon_n}\). Now let \(E = T - \bigcup_{n=1}^{\infty} E_n\). Then \(E\) has 0 as a point of density. In \(E\), \(\varphi(t) \to 0\), and \(\varphi(t) = \frac{1}{(2\pi t)} \int_{0}^{2\pi} L(e^{i\theta}) \Omega(\theta) \, d\theta\). Thus, the theorem is established.

7. Proof of Theorem 2. Let

\[
T_R(x) = \sum_{|n| < R; n_1 + n_2 = 0} \frac{1}{2}(x_1 + x_2)c_n e^{i n x} + \sum_{|n| < R; n_1 + n_2 \neq 0} \frac{-i c_n}{n_1 + n_2} e^{i n x}.
\]

The condition (4.1) insures that \(L(x) = \lim_{R \to \infty} T_R(x)\) exists a.e. on each circle \(|x| = t\). This is a consequence of Theorem 1 of [2]. Moreover, by Theorem 2 of [2], \(\int_{0}^{2\pi} \sup_{R} |T_R(e^{i\theta})| \, d\theta < \infty\), so
\[
\frac{1}{2\pi t} \int_0^{2\pi} L(te^{i\theta}) \Omega(\theta) \, d\theta = \lim_{R \to \infty} \frac{1}{2\pi t} \int_0^{2\pi} T_R(te^{i\theta}) \Omega(\theta) \, d\theta
\]
\[
= \lim_{R \to \infty} \sum_{|n| < R} c_n \cdot \frac{1}{2\pi t} \int_0^{2\pi} g_n(te^{i\theta}) \Omega(\theta) \, d\theta
\]
\[
= \lim_{R \to \infty} \sum_{|n| < R} c_n \frac{J_1([n]|t)}{|n|t}.
\]

We now let
\[
\varphi(t) = \frac{1}{2\pi t} \int_0^{2\pi} L(te^{i\theta}) \Omega(\theta) \, d\theta.
\]

Summing by parts,
\[
\varphi(t) = \int_0^u S_u \frac{J_2(u)}{u} \, du.
\]

The verification of the claim (6.5) and the completion of the proof follow exactly the lines of the completion of the proof of Theorem 3.

REFERENCES

DEPARTMENT OF MATHEMATICS, BROOKLYN COLLEGE (CUNY), BROOKLYN, NEW YORK 11210