Lebesgue summability of double trigonometric series
HTML articles powered by AMS MathViewer
- by M. J. Kohn
- Trans. Amer. Math. Soc. 225 (1977), 199-209
- DOI: https://doi.org/10.1090/S0002-9947-1977-0425505-0
- PDF | Request permission
Abstract:
We formulate a definition of symmetric derivatives of odd order for functions of two variables. Our definition is based on expanding in a Taylor’s series a weighted average of the function about circles. The definition is applied to derive results on Lebesgue summability for spherically convergent double trigonometric series.References
- A. Erdélyi, W. Magnus, F. Oberheittinger and F. G. Tricomi, Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1953. MR 15, 419.
- M. J. Kohn, Spherical convergence and integrability of multiple trigonometric series on hypersurfaces, Studia Math. 44 (1972), 345–354. MR 344796, DOI 10.4064/sm-44-4-345-354
- M. J. Kohn, Riemann summability of multiple trigonometric series, Indiana Univ. Math. J. 24 (1974/75), 813–823. MR 367550, DOI 10.1512/iumj.1975.24.24064
- Victor L. Shapiro, Circular summability $C$ of double trigonometric series, Trans. Amer. Math. Soc. 76 (1954), 223–233. MR 61688, DOI 10.1090/S0002-9947-1954-0061688-7
- Victor L. Shapiro, The approximate divergence operator, Proc. Amer. Math. Soc. 20 (1969), 55–60. MR 236623, DOI 10.1090/S0002-9939-1969-0236623-5
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 225 (1977), 199-209
- MSC: Primary 42A92
- DOI: https://doi.org/10.1090/S0002-9947-1977-0425505-0
- MathSciNet review: 0425505