Balayage in Fourier transforms: general results, perturbation, and balayage with sparse frequencies
HTML articles powered by AMS MathViewer
- by George S. Shapiro
- Trans. Amer. Math. Soc. 225 (1977), 183-198
- DOI: https://doi.org/10.1090/S0002-9947-1977-0425510-4
- PDF | Request permission
Abstract:
Let $\Lambda$ be a discrete subset of an LCA group and E a compact subset of the dual group. Balayage is said to be possible for $(\Lambda ,E)$ if the Fourier transform of each measure on G is equal on E to the Fourier transform of some measure supported by $\Lambda$. Following Beurling, we show that this condition is equivalent to the possibility of bounding certain functions with spectra in E by their bounds on $\Lambda$. We derive consequences of this equivalence, among them a necessary condition on $\Lambda$ for balayage when E is compact and open (a condition analogous to a density condition Beurling and Landau gave for balayage in Euclidean spaces). We show that if balayage is possible for $(\Lambda ,E)$ and if $\Lambda ’$ is close to $\Lambda$, then balayage is possible for $(\Lambda ’,E)$. Explicit bounds for the needed closeness in R and ${R^n}$ are given. Using these perturbation techniques, we give examples of perfect sets $E \subset R$ with the property that there are “arbitrarily sparse” sets $\Lambda$ with balayage possible for $(\Lambda ,E)$.References
- William G. Bade and Philip C. Curtis Jr., Embedding theorems for commutative Banach algebras, Pacific J. Math. 18 (1966), 391–409. MR 202001, DOI 10.2140/pjm.1966.18.391 A. Beurling, On balayage of measures in Fourier transforms, Notes from a seminar at the Institute for Advanced Study, Princeton, N.J., 1959-60 (unpublished).
- Arne Beurling, Local harmonic analysis with some applications to differential operators, Some Recent Advances in the Basic Sciences, Vol. 1 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1962-1964) Yeshiva Univ., Belfer Graduate School of Science, New York, 1966, pp. 109–125. MR 0427956
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Jean-Pierre Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin-New York, 1970 (French). MR 0275043, DOI 10.1007/978-3-662-59158-1
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1301, Hermann, Paris, 1963 (French). MR 0160065
- H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37–52. MR 222554, DOI 10.1007/BF02395039
- Yves Meyer, Algebraic numbers and harmonic analysis, North-Holland Mathematical Library, Vol. 2, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1972. MR 0485769
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811 G. S. Shapiro, Some aspects of balayage of Fourier transforms, Dissertation, Harvard Univ., 1973.
- N. Th. Varopoulos, Sets of multiplicity in locally compact abelian groups, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 2, 123–158 (English, with French summary). MR 212508, DOI 10.5802/aif.238
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 225 (1977), 183-198
- MSC: Primary 43A25; Secondary 42A44
- DOI: https://doi.org/10.1090/S0002-9947-1977-0425510-4
- MathSciNet review: 0425510