A singular semilinear equation in $L^{1}(\textbf {R})$
HTML articles powered by AMS MathViewer
- by Michael G. Crandall and Lawrence C. Evans
- Trans. Amer. Math. Soc. 225 (1977), 145-153
- DOI: https://doi.org/10.1090/S0002-9947-1977-0477240-0
- PDF | Request permission
Abstract:
Let $\beta$ be a positive and nondecreasing function on R. The boundary-value problem $\beta (u) - u'' = f,u’( \pm \infty ) = 0$ is considered for $f \in {L^1}({\mathbf {R}})$. It is shown that this problem can have a solution only if $\beta$ is integrable near $- \infty$, and that if this is the case, then the problem has a solution exactly when $\smallint _{ - \infty }^\infty f(x)dx > 0$.References
- Philippe Benilan, Haim Brezis, and Michael G. Crandall, A semilinear equation in $L^{1}(R^{N})$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 4, 523–555. MR 390473
- H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). MR 0348562
- Haïm Brézis and Walter A. Strauss, Semi-linear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan 25 (1973), 565–590. MR 336050, DOI 10.2969/jmsj/02540565
- Michael G. Crandall, An introduction to evolution governed by accretive operators, Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I., 1974) Academic Press, New York, 1976, pp. 131–165. MR 0636953
- Thomas G. Kurtz, Convergence of sequences of semigroups of nonlinear operators with an application to gas kinetics, Trans. Amer. Math. Soc. 186 (1973), 259–272 (1974). MR 336482, DOI 10.1090/S0002-9947-1973-0336482-1
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 225 (1977), 145-153
- MSC: Primary 34B15
- DOI: https://doi.org/10.1090/S0002-9947-1977-0477240-0
- MathSciNet review: 0477240