Discrete analytic functions of exponential growth
HTML articles powered by AMS MathViewer
- by Doron Zeilberger
- Trans. Amer. Math. Soc. 226 (1977), 181-189
- DOI: https://doi.org/10.1090/S0002-9947-1977-0432894-X
- PDF | Request permission
Abstract:
Analogues of classical representation formulas for entire functions of exponential type are proved in the class of discrete analytic functions.References
- Jacqueline Ferrand, Fonctions préharmoniques et fonctions préholomorphes, Bull. Sci. Math. (2) 68 (1944), 152–180 (French). MR 13411
- R. J. Duffin, Basic properties of discrete analytic functions, Duke Math. J. 23 (1956), 335–363. MR 78441, DOI 10.1215/S0012-7094-56-02332-8
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- Leon Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1970. MR 0285849
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- V. P. Havin, Spaces of analytic functions, Math. Analysis 1964 (Russian), Akad. Nauk SSSR Inst. Naučn. Informacii, Moscow, 1966, pp. 76–164 (Russian). MR 0206694
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 226 (1977), 181-189
- MSC: Primary 30A95; Secondary 30A98
- DOI: https://doi.org/10.1090/S0002-9947-1977-0432894-X
- MathSciNet review: 0432894