Linear operators for which $T^*T$ and $T+T^*$ commute. II
HTML articles powered by AMS MathViewer
- by Stephen L. Campbell and Ralph Gellar
- Trans. Amer. Math. Soc. 226 (1977), 305-319
- DOI: https://doi.org/10.1090/S0002-9947-1977-0435905-0
- PDF | Request permission
Abstract:
Let $\theta$ denote the set of bounded linear operators T, acting on a separable Hilbert space $\mathcal {K}$ such that ${T^\ast }T$ and $T + {T^\ast }$ commute. It is shown that such operators are ${G_1}$. A complete structure theory is developed for the case when $\sigma (T)$ does not intersect the real axis. Using this structure theory, several nonhyponormal operators in $\theta$ with special properties are constructed.References
- S. K. Berberian, Some conditions on an operator implying normality. II, Proc. Amer. Math. Soc. 26 (1970), 277β281. MR 265975, DOI 10.1090/S0002-9939-1970-0265975-3
- Arlen Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723β728. MR 59483, DOI 10.1090/S0002-9939-1953-0059483-2
- Stephen L. Campbell, Operator-valued inner functions analytic on the closed disc. II, Pacific J. Math. 60 (1976), no.Β 2, 37β49. MR 428078, DOI 10.2140/pjm.1975.60.37
- Stephen L. Campbell, Linear operators for which $T^*T$ and $T+T^*$ commute, Pacific J. Math. 61 (1975), no.Β 1, 53β57. MR 405168, DOI 10.2140/pjm.1975.61.53
- Stephen L. Campbell and Ralph Gellar, Spectral properties of linear operators for which $T^*T$ and $T$ $+$ $T^*$ commute, Proc. Amer. Math. Soc. 60 (1976), 197β202 (1977). MR 417841, DOI 10.1090/S0002-9939-1976-0417841-3
- K. F. Clancey and C. R. Putnam, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc. 163 (1972), 239β244. MR 291844, DOI 10.1090/S0002-9947-1972-0291844-5
- William F. Donoghue Jr., On a problem of Nieminen, Inst. Hautes Γtudes Sci. Publ. Math. 16 (1963), 31β33. MR 152892, DOI 10.1007/BF02684290
- Mary R. Embry, Conditions implying normality in Hilbert space, Pacific J. Math. 18 (1966), 457β460. MR 196488, DOI 10.2140/pjm.1966.18.457
- Mary R. Embry, A connection between commutativity and separation of spectra of operators, Acta Sci. Math. (Szeged) 32 (1971), 235β237. MR 303321
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Roger Howe, A functional calculus for hyponormal operators, Indiana Univ. Math. J. 23 (1973/74), 631β644. MR 324464, DOI 10.1512/iumj.1974.23.23054
- George H. Orland, On a class of operators, Proc. Amer. Math. Soc. 15 (1964), 75β79. MR 157244, DOI 10.1090/S0002-9939-1964-0157244-4
- C. R. Putnam, Eigenvalues and boundary spectra, Illinois J. Math. 12 (1968), 278β282. MR 226440, DOI 10.1215/ijm/1256054217
- C. R. Putnam, The spectra of operators having resolvents of first-order growth, Trans. Amer. Math. Soc. 133 (1968), 505β510. MR 229073, DOI 10.1090/S0002-9947-1968-0229073-2
- Frigyes Riesz and BΓ©la Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469β476. MR 173161, DOI 10.1090/S0002-9947-1965-0173161-3
- J. G. Stampfli, A local spectral theory for operators, J. Functional Analysis 4 (1969), 1β10. MR 0243376, DOI 10.1016/0022-1236(69)90018-4
- Joseph G. Stampfli, A local spectral theory for operators. IV. Invariant subspaces, Indiana Univ. Math. J. 22 (1972/73), 159β167. MR 296734, DOI 10.1512/iumj.1972.22.22014
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 226 (1977), 305-319
- MSC: Primary 47A65; Secondary 47B20
- DOI: https://doi.org/10.1090/S0002-9947-1977-0435905-0
- MathSciNet review: 0435905