Cohomological dimension of a group with respect to finite modules
HTML articles powered by AMS MathViewer
- by Juan José Martínez
- Trans. Amer. Math. Soc. 226 (1977), 191-201
- DOI: https://doi.org/10.1090/S0002-9947-1977-0437654-1
- PDF | Request permission
Abstract:
The purpose of this paper is to compare the cohomological dimension of a group, relative to finite modules, with the cohomological dimension, in the usual sense, of its profinite completion. The basic tool used to perform this comparison is certain stable cohomology of the group. The reason is that there exists a spectral sequence which relates the continuous cohomology of the profinite completion, with coefficients in this stable cohomology, to the ordinary cohomology of the group. Moreover, the direct method of connecting the cohomology of the group with the profinite cohomology of its completion arises from the edge effects on the base of this spectral sequence.References
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- Karl W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, Vol. 143, Springer-Verlag, Berlin-New York, 1970. MR 0279200, DOI 10.1007/BFb0059162
- Serge Lang, Rapport sur la cohomologie des groupes, W. A. Benjamin, Inc., New York-Amsterdam, 1967 (French). MR 0212073
- Jean-Pierre Serre, Cohomologie galoisienne, Lecture Notes in Mathematics, No. 5, Springer-Verlag, Berlin-New York, 1965 (French). With a contribution by Jean-Louis Verdier; Troisième édition, 1965. MR 0201444, DOI 10.1007/978-3-662-21576-0
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 226 (1977), 191-201
- MSC: Primary 20J05
- DOI: https://doi.org/10.1090/S0002-9947-1977-0437654-1
- MathSciNet review: 0437654