Higher algebraic $K$-theories
HTML articles powered by AMS MathViewer
- by D. Anderson, M. Karoubi and J. Wagoner
- Trans. Amer. Math. Soc. 226 (1977), 209-225
- DOI: https://doi.org/10.1090/S0002-9947-1977-0444743-4
- PDF | Request permission
Abstract:
A homotopy fibration is established relating the Volodin or BN-pair definition of algebraic K-theory to the theory defined by Quillen. In [2] we outlined the construction of natural homomorphisms \[ K_ \ast ^Q \to K_ \ast ^{BN} \to K_ \ast ^V \to K_ \ast ^{KV}\] between higher algebraic K-theories $K_ \ast ^Q$ of [10] and [11], $K_ \ast ^{BN}$ of [17], $K_ \ast ^V$ of [16], and $K_ \ast ^{KV}$ of [7] and [8]. This was one of the steps in proving the various definitions of higher K-theory are equivalent. It turns out they all agree-including the theory $K_ \ast ^S$ of [14], [5], and [8]-provided one restricts to the category of regular rings when using $K_\ast ^{KV}$. See [1], [2], [5], [8] and [18]. The purpose of this paper is to prove the following theorem, announced in [2], which yields the construction of $K_ \ast ^Q \to K_ \ast ^{BN}$. Theorem. For any associative ring with identity A \[ G{L^{BN}}(A) \to B{\{ {U_F}\} ^ + } \to BGL{(A)^ + }\] is a homotopy fibration. For the reader’s convenience and because the presentation of the BN-pair K-theory $K_ \ast ^{BN}$ used here is slightly different from that of [17], we shall briefly recall the definition of $G{L^{BN}}$ and $B\{ {U_F}\}$ in the first section.References
- D. W. Anderson, Relationship among $K$-theories, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 57–72. MR 0349809
- D. Anderson, M. Karoubi, and J. Wagoner, Relations between higher algebraic $K$-theories, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 73–81. MR 0354814
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- William Browder, Higher torsion in $H$-spaces, Trans. Amer. Math. Soc. 108 (1963), 353–375. MR 155326, DOI 10.1090/S0002-9947-1963-0155326-8
- S. M. Gersten, Higher $K$-theory of rings, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 3–42. MR 0382398
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- Max Karoubi and Orlando Villamayor, Foncteurs $K^{n}$ en algèbre et en topologie, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416–A419 (French). MR 251717
- Frans Keune, Derived functors and algebraic $K$-theory, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 166–176. MR 0424900
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393, DOI 10.1007/BF02684591
- James Dillon Stasheff, On extensions of $H$-spaces, Trans. Amer. Math. Soc. 105 (1962), 126–135. MR 178469, DOI 10.1090/S0002-9947-1962-0178469-0
- Richard G. Swan, Nonabelian homological algebra and $K$-theory, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 88–123. MR 0257185
- Emery Thomas, Fields of tangent $k$-planes on manifolds, Invent. Math. 3 (1967), 334–347. MR 217814, DOI 10.1007/BF01402957
- I. A. Volodin, Algebraic $K$-theory as an extraordinary homology theory on the category of associative rings with a unit, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 844–873 (Russian). MR 0296140
- J. Wagoner, Buildings, stratifications, and higher $K$-theory, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 148–165. MR 0380836 —, Equivalence of algebraic K-theories, Univ. of Calif., Berkeley (preprint).
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 226 (1977), 209-225
- MSC: Primary 18F25; Secondary 16A54
- DOI: https://doi.org/10.1090/S0002-9947-1977-0444743-4
- MathSciNet review: 0444743