Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Higher algebraic $K$-theories
HTML articles powered by AMS MathViewer

by D. Anderson, M. Karoubi and J. Wagoner
Trans. Amer. Math. Soc. 226 (1977), 209-225
DOI: https://doi.org/10.1090/S0002-9947-1977-0444743-4

Abstract:

A homotopy fibration is established relating the Volodin or BN-pair definition of algebraic K-theory to the theory defined by Quillen. In [2] we outlined the construction of natural homomorphisms \[ K_ \ast ^Q \to K_ \ast ^{BN} \to K_ \ast ^V \to K_ \ast ^{KV}\] between higher algebraic K-theories $K_ \ast ^Q$ of [10] and [11], $K_ \ast ^{BN}$ of [17], $K_ \ast ^V$ of [16], and $K_ \ast ^{KV}$ of [7] and [8]. This was one of the steps in proving the various definitions of higher K-theory are equivalent. It turns out they all agree-including the theory $K_ \ast ^S$ of [14], [5], and [8]-provided one restricts to the category of regular rings when using $K_\ast ^{KV}$. See [1], [2], [5], [8] and [18]. The purpose of this paper is to prove the following theorem, announced in [2], which yields the construction of $K_ \ast ^Q \to K_ \ast ^{BN}$. Theorem. For any associative ring with identity A \[ G{L^{BN}}(A) \to B{\{ {U_F}\} ^ + } \to BGL{(A)^ + }\] is a homotopy fibration. For the reader’s convenience and because the presentation of the BN-pair K-theory $K_ \ast ^{BN}$ used here is slightly different from that of [17], we shall briefly recall the definition of $G{L^{BN}}$ and $B\{ {U_F}\}$ in the first section.
References
  • D. W. Anderson, Relationship among $K$-theories, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 57–72. MR 0349809
  • D. Anderson, M. Karoubi, and J. Wagoner, Relations between higher algebraic $K$-theories, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 73–81. MR 0354814
  • N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
  • William Browder, Higher torsion in $H$-spaces, Trans. Amer. Math. Soc. 108 (1963), 353–375. MR 155326, DOI 10.1090/S0002-9947-1963-0155326-8
  • S. M. Gersten, Higher $K$-theory of rings, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 3–42. MR 0382398
  • Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
  • Max Karoubi and Orlando Villamayor, Foncteurs $K^{n}$ en algèbre et en topologie, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416–A419 (French). MR 251717
  • Frans Keune, Derived functors and algebraic $K$-theory, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 166–176. MR 0424900
  • Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
  • Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
  • Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
  • Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393, DOI 10.1007/BF02684591
  • James Dillon Stasheff, On extensions of $H$-spaces, Trans. Amer. Math. Soc. 105 (1962), 126–135. MR 178469, DOI 10.1090/S0002-9947-1962-0178469-0
  • Richard G. Swan, Nonabelian homological algebra and $K$-theory, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 88–123. MR 0257185
  • Emery Thomas, Fields of tangent $k$-planes on manifolds, Invent. Math. 3 (1967), 334–347. MR 217814, DOI 10.1007/BF01402957
  • I. A. Volodin, Algebraic $K$-theory as an extraordinary homology theory on the category of associative rings with a unit, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 844–873 (Russian). MR 0296140
  • J. Wagoner, Buildings, stratifications, and higher $K$-theory, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 148–165. MR 0380836
  • —, Equivalence of algebraic K-theories, Univ. of Calif., Berkeley (preprint).
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 18F25, 16A54
  • Retrieve articles in all journals with MSC: 18F25, 16A54
Bibliographic Information
  • © Copyright 1977 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 226 (1977), 209-225
  • MSC: Primary 18F25; Secondary 16A54
  • DOI: https://doi.org/10.1090/S0002-9947-1977-0444743-4
  • MathSciNet review: 0444743