Hopf invariants and Browder’s work on the Kervaire invariant problem
HTML articles powered by AMS MathViewer
- by Warren M. Krueger
- Trans. Amer. Math. Soc. 228 (1977), 85-97
- DOI: https://doi.org/10.1090/S0002-9947-1977-0431171-0
- PDF | Request permission
Abstract:
In this paper we calculate certain functional differentials in the Adams spectral sequence converging to Wu cobordism whose values may be thought of as Hopf invariants. These results are applied to reobtain Browder’s characterization: if $q + 1 = {2^k}$, there is a 2q dimensional manifold of Kervaire invariant one if and only if $h_k^2$ survives to ${E_\infty }({S^0})$.References
- J. F. Adams, Stable homotopy and generalized homology, Math. Lecture Notes, Univ. of Chicago, Chicago, 1971.
- William Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157–186. MR 251736, DOI 10.2307/1970686
- Warren M. Krueger, Generalized Steenrod-Hopf invariants for stable homotopy theory, Proc. Amer. Math. Soc. 39 (1973), 609–615. MR 385860, DOI 10.1090/S0002-9939-1973-0385860-9 —, Cohomology operations and the Adams spectral sequence (unpublished).
- Warren M. Krueger, Peterson-Stein formulas in the Adams spectral sequence, Proc. Amer. Math. Soc. 56 (1976), 377–379. MR 400229, DOI 10.1090/S0002-9939-1976-0400229-9
- A. L. Liulevicius, A proof of Thom’s theorem, Comment. Math. Helv. 37 (1962/63), 121–131. MR 145527, DOI 10.1007/BF02566966
- Arunas Liulevicius, Homology comodules, Trans. Amer. Math. Soc. 134 (1968), 375–382. MR 251720, DOI 10.1090/S0002-9947-1968-0251720-X
- Mark Mahowald and Martin Tangora, Some differentials in the Adams spectral sequence, Topology 6 (1967), 349–369. MR 214072, DOI 10.1016/0040-9383(67)90023-7
- Jean-Pierre Meyer, Functional cohomology operations and relations, Amer. J. Math. 87 (1965), 649–683. MR 184228, DOI 10.2307/2373067
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 99653, DOI 10.2307/1969932
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- Robert E. Stong, Relations among Stiefel-Whitney classes, Proc. Amer. Math. Soc. 15 (1964), 151–153. MR 159325, DOI 10.1090/S0002-9939-1964-0159325-8
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 228 (1977), 85-97
- MSC: Primary 55H15; Secondary 57D90
- DOI: https://doi.org/10.1090/S0002-9947-1977-0431171-0
- MathSciNet review: 0431171