Hausdorff content and rational approximation in fractional Lipschitz norms
Author:
Anthony G. O’Farrell
Journal:
Trans. Amer. Math. Soc. 228 (1977), 187-206
MSC:
Primary 30A82
DOI:
https://doi.org/10.1090/S0002-9947-1977-0432887-2
MathSciNet review:
0432887
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For , we characterise those compact sets X in the plane with the property that each function in the class
that is analytic at all interior points of X is the limit in
norm of a sequence of rational functions. The characterisation is in terms of Hausdorff content.
- [1] Andrew Browder, Introduction to function algebras, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0246125
- [2] Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
- [3] A. M. Davie, Analytic capacity and approximation problems, Trans. Amer. Math. Soc. 171 (1972), 409–444. MR 350009, https://doi.org/10.1090/S0002-9947-1972-0350009-9
- [4] E. P. Dolženko, The removability of singularities of analytic functions, Uspehi Mat. Nauk 18 (1963), no. 4 (112), 135–142 (Russian). MR 0155965
- [5] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- [6] Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969. MR 0410387
- [7] T. W. Gamelin and John Garnett, Pointwise bounded approximation and Dirichlet algebras, J. Functional Analysis 8 (1971), 360–404. MR 0295085, https://doi.org/10.1016/0022-1236(71)90002-4
- [8] John Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, Vol. 297, Springer-Verlag, Berlin-New York, 1972. MR 0454006
- [9] Lars Inge Hedberg, The Stone-Weierstrass theorem in Lipschitz algebras, Ark. Mat. 8 (1969), 63–72. MR 261358, https://doi.org/10.1007/BF02589536
- [10] M. S. Mel′nikov, Metric properties of analytic 𝛼-capacity and approximations of analytic functions with a Hölder condition by rational functions, Mat. Sb. (N.S.) 79 (121) (1969), 118–127 (Russian). MR 0268389
- [11] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- [12] A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 141–199 (Russian). MR 0229838
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A82
Retrieve articles in all journals with MSC: 30A82
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1977-0432887-2
Keywords:
Capacity,
complex plane
Article copyright:
© Copyright 1977
American Mathematical Society