Examples for the nonuniqueness of the equilibrium state
HTML articles powered by AMS MathViewer
- by Franz Hofbauer
- Trans. Amer. Math. Soc. 228 (1977), 223-241
- DOI: https://doi.org/10.1090/S0002-9947-1977-0435352-1
- PDF | Request permission
Abstract:
In this paper equilibrium states on shift spaces are considered. A uniqueness theorem for equilibrium states is proved. Then we study a particular class of continuous functions. We characterize the functions of this class which satisfy Ruelle’s Perron-Frobenius condition, those which admit a measure determined by a homogeneity condition, and those which have unique equilibrium state. In particular, we get examples for the nonuniqueness of the equilibrium state.References
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989, DOI 10.1007/BFb0081279 B. Felderhof and M. Fisher, four articles, Ann. Phys. 58 (1970), 176, 217, 268, 281.
- William Feller, An introduction to probability theory and its applications. Vol. I, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1957. 2nd ed. MR 0088081 M. Fisher, Physica 3 (1967), 255-283.
- François Ledrappier, Principe variationnel et systèmes dynamiques symboliques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 185–202. MR 404584, DOI 10.1007/BF00533471
- David Ruelle, Statistical mechanics on a compact set with $Z^{v}$ action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237–251. MR 417391, DOI 10.1090/S0002-9947-1973-0417391-6
- Peter Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1975), no. 4, 937–971. MR 390180, DOI 10.2307/2373682 —, Ruelle’s operator theorem and g-measures, Trans. Amer. Math. Soc. (to appear).
- B. Weiss, Intrinsically ergodic systems, Bull. Amer. Math. Soc. 76 (1970), 1266–1269. MR 267076, DOI 10.1090/S0002-9904-1970-12632-5
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 228 (1977), 223-241
- MSC: Primary 28A65
- DOI: https://doi.org/10.1090/S0002-9947-1977-0435352-1
- MathSciNet review: 0435352