Representation theorems for nonlinear disjointly additive functionals and operators on Sobolev spaces
HTML articles powered by AMS MathViewer
- by Moshe Marcus and Victor J. Mizel
- Trans. Amer. Math. Soc. 228 (1977), 1-45
- DOI: https://doi.org/10.1090/S0002-9947-1977-0454622-4
- PDF | Request permission
Abstract:
An abstract characterization is obtained for a class of nonlinear differential operators defined on the subspace $S = {\mathring {W}}_k^p[a,b]$ of the kth order Sobolev space $W_k^p[a,b], 1 \leqslant k, 1 \leqslant p \leqslant \infty$. It is shown that every mapping $T:S \to {L^1}[a,b]$ which is local, continuous and ${D^k}$-disjointly additive has the form $(Tu)(t) = H(t,{D^k}u(t))$, where $H:[a,b] \times R \to R$ is a function obeying Carathéodory conditions as well as $(\ast )H( \cdot ,0) = 0$. Here ${D^k}$-disjoint additivity means $T(u + v) = Tu + Tv$ whenever $({D^k}u)({D^k}v) = 0$. Likewise, every real functional N on S which is continuous and ${D^k}$-disjointly additive has the form $N(u) = \smallint Tu$, with T as above. Liapunov’s theorem on vector measures plays a crucial role, and the analysis suggests new questions about such measures. Likewise, a new type of Radon-Nikodým theorem is employed in an essential way.References
- Richard A. Alò and André de Korvin, Representation of Hammerstein operators by Nemytskii measures, J. Math. Anal. Appl. 52 (1975), no. 3, 490–513. MR 428145, DOI 10.1016/0022-247X(75)90075-X
- Jürgen Batt, Nonlinear integral operators on $C(S,E)$, Studia Math. 48 (1973), 145–177. MR 336335, DOI 10.4064/sm-48-2-145-177
- David Blackwell, The range of certain vector integrals, Proc. Amer. Math. Soc. 2 (1951), 390–395. MR 41195, DOI 10.1090/S0002-9939-1951-0041195-0
- R. V. Chacon and N. Friedman, Additive functionals, Arch. Rational Mech. Anal. 18 (1965), 230–240. MR 172103, DOI 10.1007/BF00285434
- L. Drewnowski and W. Orlicz, Continuity and representation of orthogonally additive functionals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 647–653 (English, with Russian summary). MR 256147
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book, The Macmillan Company, New York, 1964. Translated by A. H. Armstrong; translation edited by J. Burlak. MR 0159197
- M. A. Krasnosel′skiĭ, P. P. Zabreĭko, E. I. Pustyl′nik, and P. E. Sobolevskiĭ, Integral′nye operatory v prostranstvakh summiruemykh funktsiĭ, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0206751
- A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 465–478 (Russian, with French summary). MR 0004080
- A. D. Martin and V. J. Mizel, A representation theorem for certain nonlinear functionals, Arch. Rational Mech. Anal. 15 (1964), 353–367. MR 162131, DOI 10.1007/BF00256926
- Victor J. Mizel, Characterization of non-linear transformations possessing kernels, Canadian J. Math. 22 (1970), 449–471. MR 262890, DOI 10.4153/CJM-1970-053-3
- Victor J. Mizel and K. Sundaresan, Representation of vector valued nonlinear functions, Trans. Amer. Math. Soc. 159 (1971), 111–127. MR 279647, DOI 10.1090/S0002-9947-1971-0279647-8
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 228 (1977), 1-45
- MSC: Primary 46E35; Secondary 46G99
- DOI: https://doi.org/10.1090/S0002-9947-1977-0454622-4
- MathSciNet review: 0454622