## Lifting idempotents and exchange rings

HTML articles powered by AMS MathViewer

- by W. K. Nicholson
- Trans. Amer. Math. Soc.
**229**(1977), 269-278 - DOI: https://doi.org/10.1090/S0002-9947-1977-0439876-2
- PDF | Request permission

## Abstract:

Idempotents can be lifted modulo a one-sided ideal*L*of a ring

*R*if, given $x \in R$ with $x - {x^2} \in L$, there exists an idempotent $e \in R$ such that $e - x \in L$. Rings in which idempotents can be lifted modulo every left (equivalently right) ideal are studied and are shown to coincide with the exchange rings of Warfield. Some results of Warfield are deduced and it is shown that a projective module

*P*has the finite exchange property if and only if, whenever $P = N + M$ where

*N*and

*M*are submodules, there is a decomposition $P = A \oplus B$ with $A \subseteq N$ and $B \subseteq M$.

## References

- Hyman Bass,
*Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc.**95**(1960), 466–488. MR**157984**, DOI 10.1090/S0002-9947-1960-0157984-8 - Peter Crawley and Bjarni Jónsson,
*Refinements for infinite direct decompositions of algebraic systems*, Pacific J. Math.**14**(1964), 797–855. MR**169806**, DOI 10.2140/pjm.1964.14.797 - Nathan Jacobson,
*Structure of rings*, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR**0222106** - Irving Kaplansky,
*Projective modules*, Ann. of Math. (2)**68**(1958), 372–377. MR**0100017**, DOI 10.2307/1970252 - G. S. Monk,
*A characterization of exchange rings*, Proc. Amer. Math. Soc.**35**(1972), 349–353. MR**302695**, DOI 10.1090/S0002-9939-1972-0302695-2 - Bruno J. Mueller,
*On semi-perfect rings*, Illinois J. Math.**14**(1970), 464–467. MR**262299** - W. K. Nicholson,
*Semiregular modules and rings*, Canadian J. Math.**28**(1976), no. 5, 1105–1120. MR**422343**, DOI 10.4153/CJM-1976-109-2
W. A. Shutters, - R. B. Warfield Jr.,
*A Krull-Schmidt theorem for infinite sums of modules*, Proc. Amer. Math. Soc.**22**(1969), 460–465. MR**242886**, DOI 10.1090/S0002-9939-1969-0242886-2 - R. B. Warfield Jr.,
*Exchange rings and decompositions of modules*, Math. Ann.**199**(1972), 31–36. MR**332893**, DOI 10.1007/BF01419573

*Exchange rings and P-exchange rings*, Notices Amer. Math. Soc.

**21**(1974), A-590. Abstract #74T-A242.

## Bibliographic Information

- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**229**(1977), 269-278 - MSC: Primary 16A32
- DOI: https://doi.org/10.1090/S0002-9947-1977-0439876-2
- MathSciNet review: 0439876