## Moduli of continuity for exponential Lipschitz classes

HTML articles powered by AMS MathViewer

- by Paul De Land
- Trans. Amer. Math. Soc.
**229**(1977), 175-189 - DOI: https://doi.org/10.1090/S0002-9947-1977-0442157-4
- PDF | Request permission

## Abstract:

Let $\Psi$ be a convex function, and let*f*be a real-valued function on [0, 1]. Let a modulus of continuity associated to $\Psi$ be given as \[ {Q_\Psi }(\delta ,f) = \inf \left \{ {\lambda :\frac {1}{\delta }\iint \limits _{|x - y| \leqslant \delta } {\Psi \left ( {\frac {{|f(x) - f(y)|}}{\lambda }} \right )}\;dx\;dy\; \leqslant \Psi (1)} \right \}.\] It is shown that $\smallint _0^1{Q_\Psi }(\delta ,f)\;d\;( - {\Psi ^{ - 1}}(c/\delta )) < \infty$ guarantees the essential continuity of

*f*, and, in fact, a uniform Lipschitz estimate is given. In the case that $\Psi (u) = \exp \;{u^2}$ the above condition reduces to \[ \int _0^1 {{Q_{\exp \;{u^2}}}\;(\delta ,f)\frac {{d\delta }}{{\delta \sqrt {\log (c/\delta )} }}\; < \infty .} \] This exponential square condition is satisfied almost surely by the random Fourier series ${f_t}(x) = \Sigma _{n = 1}^\infty {a_n}{R_n}(t){e^{inx}}$, where $\{ {R_n}\}$ is the Rademacher system, as long as \[ \int _0^1 {\sqrt {a_n^2{{\sin }^2}(n\delta /2)} \frac {{d\delta }}{{\delta \sqrt {\log (1/\delta )} }}\; < \infty .} \] Hence, the random essential continuity of ${f_t}(x)$ is guaranteed by each of the above conditions.

## References

- R. M. Blumenthal and R. K. Getoor,
*Markov processes and potential theory*, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR**0264757**
P. De Land, ${L^\infty }$ - Adriano M. Garsia,
*A remarkable inequality and the uniform convergence of Fourier series*, Indiana Univ. Math. J.**25**(1976), no. 1, 85–102. MR**413247**, DOI 10.1512/iumj.1976.25.25008 - A. M. Garsia and E. Rodemich,
*Monotonicity of certain functionals under rearrangement*, Ann. Inst. Fourier (Grenoble)**24**(1974), no. 2, vi, 67–116 (English, with French summary). MR**414802**, DOI 10.5802/aif.507 - Naresh C. Jain and M. B. Marcus,
*Sufficient conditions for the continuity of stationary Gaussian processes and applications to random series of functions*, Ann. Inst. Fourier (Grenoble)**24**(1974), no. 2, vi, 117–141 (English, with French summary). MR**413239** - M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ,
*Convex functions and Orlicz spaces*, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR**0126722** - R. Salem and A. Zygmund,
*Some properties of trigonometric series whose terms have random signs*, Acta Math.**91**(1954), 245–301. MR**65679**, DOI 10.1007/BF02393433 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095**

*and modulus of continuity estimates for exponential Lipschitz classes*, Doctoral Dissertation, Univ. of California, San Diego, 1975.

## Bibliographic Information

- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**229**(1977), 175-189 - MSC: Primary 26A15; Secondary 42A36
- DOI: https://doi.org/10.1090/S0002-9947-1977-0442157-4
- MathSciNet review: 0442157