Unimodality and dominance for symmetric random vectors

Author:
Marek Kanter

Journal:
Trans. Amer. Math. Soc. **229** (1977), 65-85

MSC:
Primary 60E05

DOI:
https://doi.org/10.1090/S0002-9947-1977-0445580-7

MathSciNet review:
0445580

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a notion of unimodality for symmetric random vectors in is developed which is closed under convolution as well as weak convergence. A related notion of stochastic dominance for symmetric random vectors is also studied.

**[1]**T. W. Anderson,*The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities*, Proc. Amer. Math. Soc.**6**(1955), 170–176. MR**0069229**, https://doi.org/10.1090/S0002-9939-1955-0069229-1**[2]**C. Borell,*Convex set functions in 𝑑-space*, Period. Math. Hungar.**6**(1975), no. 2, 111–136. MR**0404559**, https://doi.org/10.1007/BF02018814**[3]**Ju. S. Davidovič, B. I. Korenbljum, and B. I. Hacet,*A certain property of logarithmically concave functions*, Dokl. Akad. Nauk SSSR**185**(1969), 1215–1218 (Russian). MR**0241584****[4]**William Feller,*An introduction to probability theory and its applications. Vol. II*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0210154****[5]**Pankaj Ghosh,*On generalized unimodality*, Comm. Statist.**3**(1974), 567–580. MR**0348880****[6]**Einar Hille and Ralph S. Phillips,*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR**0089373****[7]**I. A. Ibragimov and Yu. V. Linnik,*Independent and stationary sequences of random variables*, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR**0322926****[8]**Richard A. Olshen and Leonard J. Savage,*A generalized unimodality*, J. Appl. Probability**7**(1970), 21–34. MR**0261661****[9]**K. R. Parthasarathy,*Probability measures on metric spaces*, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR**0226684****[10]**András Prékopa,*On logarithmic concave measures and functions*, Acta Sci. Math. (Szeged)**34**(1973), 335–343. MR**0404557****[11]**A. Wayne Roberts and Dale E. Varberg,*Convex functions*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Pure and Applied Mathematics, Vol. 57. MR**0442824****[12]**Michael Schilder,*Some structure theorems for the symmetric stable laws*, Ann. Math. Statist.**41**(1970), 412–421. MR**0254915**, https://doi.org/10.1214/aoms/1177697080**[13]**S. Sherman,*A theorem on convex sets with applications*, Ann. Math. Statist.**26**(1955), 763–767. MR**0074845**, https://doi.org/10.1214/aoms/1177728435**[14]**Adriaan C. Zaanen,*An introduction to the theory of integration*, North-Holland Publishing Company, Amsterdam, 1958. MR**0097481**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60E05

Retrieve articles in all journals with MSC: 60E05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1977-0445580-7

Keywords:
Unimodality,
symmetric density,
convex set,
convolution,
logarithmically concave density

Article copyright:
© Copyright 1977
American Mathematical Society