## Unimodality and dominance for symmetric random vectors

HTML articles powered by AMS MathViewer

- by Marek Kanter
- Trans. Amer. Math. Soc.
**229**(1977), 65-85 - DOI: https://doi.org/10.1090/S0002-9947-1977-0445580-7
- PDF | Request permission

## Abstract:

In this paper a notion of unimodality for symmetric random vectors in ${R^N}$ is developed which is closed under convolution as well as weak convergence. A related notion of stochastic dominance for symmetric random vectors is also studied.## References

- T. W. Anderson,
*The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities*, Proc. Amer. Math. Soc.**6**(1955), 170â€“176. MR**69229**, DOI 10.1090/S0002-9939-1955-0069229-1 - C. Borell,
*Convex set functions in $d$-space*, Period. Math. Hungar.**6**(1975), no.Â 2, 111â€“136. MR**404559**, DOI 10.1007/BF02018814 - Ju. S. DavidoviÄŤ, B. I. Korenbljum, and B. I. Hacet,
*A certain property of logarithmically concave functions*, Dokl. Akad. Nauk SSSR**185**(1969), 1215â€“1218 (Russian). MR**0241584** - William Feller,
*An introduction to probability theory and its applications. Vol. II*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0210154** - Pankaj Ghosh,
*On generalized unimodality*, Comm. Statist.**3**(1974), 567â€“580. MR**348880**, DOI 10.1080/03610917408542854 - Einar Hille and Ralph S. Phillips,
*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR**0089373** - I. A. Ibragimov and Yu. V. Linnik,
*Independent and stationary sequences of random variables*, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR**0322926** - Richard A. Olshen and Leonard J. Savage,
*A generalized unimodality*, J. Appl. Probability**7**(1970), 21â€“34. MR**261661**, DOI 10.1017/s0021900200026905 - K. R. Parthasarathy,
*Probability measures on metric spaces*, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR**0226684** - AndrĂˇs PrĂ©kopa,
*On logarithmic concave measures and functions*, Acta Sci. Math. (Szeged)**34**(1973), 335â€“343. MR**404557** - A. Wayne Roberts and Dale E. Varberg,
*Convex functions*, Pure and Applied Mathematics, Vol. 57, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR**0442824** - Michael Schilder,
*Some structure theorems for the symmetric stable laws*, Ann. Math. Statist.**41**(1970), 412â€“421. MR**254915**, DOI 10.1214/aoms/1177697080 - S. Sherman,
*A theorem on convex sets with applications*, Ann. Math. Statist.**26**(1955), 763â€“767. MR**74845**, DOI 10.1214/aoms/1177728435 - Adriaan C. Zaanen,
*An introduction to the theory of integration*, North-Holland Publishing Co., Amsterdam, 1958. MR**0097481**

## Bibliographic Information

- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**229**(1977), 65-85 - MSC: Primary 60E05
- DOI: https://doi.org/10.1090/S0002-9947-1977-0445580-7
- MathSciNet review: 0445580