Composition series and intertwining operators for the spherical principal series. I
HTML articles powered by AMS MathViewer
- by Kenneth D. Johnson and Nolan R. Wallach
- Trans. Amer. Math. Soc. 229 (1977), 137-173
- DOI: https://doi.org/10.1090/S0002-9947-1977-0447483-0
- PDF | Request permission
Abstract:
Let G be a connected semisimple Lie group with finite center and let K be a maximal compact subgroup. Let $\pi$ be a not necessarily unitary principal series representation of G on the Hilbert space ${H^\pi }$. If ${X^\pi }$ denotes the space of K-finite vectors of ${H^\pi },\pi$ induces a representation ${\pi _0}$ of $U(g)$, the enveloping algebra of the Lie algebra of G, on ${X^\pi }$. In this paper, we determine when ${\pi _0}$ is irreducible, and if ${\pi _0}$ is not irreducible we determine the composition series of ${X^\pi }$ and the structure of the induced representations on the subquotients. Explicit computation of the intertwining operators for the different principal series representations are obtained and their relationship to polynomials defined by B. Kostant are obtained.References
- I. M. Gel′fand, M. I. Graev, and N. Ya. Vilenkin, Generalized functions. Vol. 5: Integral geometry and representation theory, Academic Press, New York-London, 1966. Translated from the Russian by Eugene Saletan. MR 0207913
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0
- Harish-Chandra, Representations of semisimple Lie groups. VI. Integrable and square-integrable representations, Amer. J. Math. 78 (1956), 564–628. MR 82056, DOI 10.2307/2372674
- Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. MR 219666, DOI 10.1007/BF02392813
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- Kenneth D. Johnson, Composition series and intertwining operators for the spherical principal series. II, Trans. Amer. Math. Soc. 215 (1976), 269–283. MR 385012, DOI 10.1090/S0002-9947-1976-0385012-X
- Kenneth Johnson and Nolan R. Wallach, Composition series and intertwining operators for the spherical principal series, Bull. Amer. Math. Soc. 78 (1972), 1053–1059. MR 310136, DOI 10.1090/S0002-9904-1972-13108-2
- A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489–578. MR 460543, DOI 10.2307/1970887
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642. MR 245725, DOI 10.1090/S0002-9904-1969-12235-4
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- R. A. Kunze and E. M. Stein, Uniformly bounded representations. III. Intertwining operators for the principal series on semisimple groups, Amer. J. Math. 89 (1967), 385–442. MR 231943, DOI 10.2307/2373128
- Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615. MR 107176, DOI 10.2307/1970331
- Paul J. Sally Jr., Intertwining operators and the representations of $\textrm {SL}(2,\,\textbf {R})$, J. Functional Analysis 6 (1970), 441–453. MR 0299727, DOI 10.1016/0022-1236(70)90071-6
- Gérard Schiffmann, Intégrales d’entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971), 3–72 (French). MR 311838, DOI 10.24033/bsmf.1711
- A. I. Štern, Completely irreducible representations of $\textrm {SU}(2,\,1)$, Dokl. Akad. Nauk SSSR 179 (1968), 1289–1292 (Russian). MR 0228623
- Reiji Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289–433 (French). MR 179296, DOI 10.24033/bsmf.1598
- N. Ja. Vilenkin, Spetsial′nye funktsii i teoriya predstavleniĭ grupp, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0209523
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
- Wilfried Schmid, On a conjecture of Langlands, Ann. of Math. (2) 93 (1971), 1–42. MR 286942, DOI 10.2307/1970751
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
- Nolan R. Wallach, Application of the higher osculating spaces to the spherical principal series, J. Differential Geometry 5 (1971), 405–413. MR 299730
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 229 (1977), 137-173
- MSC: Primary 22E45
- DOI: https://doi.org/10.1090/S0002-9947-1977-0447483-0
- MathSciNet review: 0447483