## On a notion of smallness for subsets of the Baire space

HTML articles powered by AMS MathViewer

- by Alexander S. Kechris
- Trans. Amer. Math. Soc.
**229**(1977), 191-207 - DOI: https://doi.org/10.1090/S0002-9947-1977-0450070-1
- PDF | Request permission

## Abstract:

Let us call a set $A \subseteq {\omega ^\omega }$ of functions from $\omega$ into $\omega \;\sigma$-*bounded*if there is a countable sequence of functions $\{ {\alpha _n}:n \in \omega \} \subseteq {\omega ^\omega }$ such that every member of

*A*is pointwise dominated by an element of that sequence. We study in this paper definability questions concerning this notion of smallness for subsets of ${\omega ^\omega }$. We show that most of the usual definability results about the structure of countable subsets of ${\omega ^\omega }$ have corresponding versions which hold about $\sigma$-bounded subsets of ${\omega ^\omega }$. For example, we show that every $\Sigma _{2n + 1}^1\;\sigma$-bounded subset of ${\omega ^\omega }$ has a $\Delta _{2n + 1}^1$ â€śboundâ€ť $\{ {\alpha _m}:m \in \omega \}$ and also that for any $n \geqslant 0$ there are largest $\sigma$-bounded $\Pi _{2n + 1}^1$ and $\Sigma _{2n + 2}^1$ sets. We need here the axiom of projective determinacy if $n \geqslant 1$. In order to study the notion of $\sigma$-boundedness a simple game is devised which plays here a role similar to that of the standard $^\ast$-games (see [My]) in the theory of countable sets. In the last part of the paper a class of games is defined which generalizes the $^\ast$- and $^{ \ast \ast }$- (or Banach-Mazur) games (see [My]) as well as the game mentioned above. Each of these games defines naturally a notion of smallness for subsets of ${\omega ^\omega }$ whose special cases include countability, being of the first category and $\sigma$-boundedness and for which one can generalize all the main results of the present paper.

## References

- D. R. Busch,
- Morton Davis,
*Infinite games of perfect information*, Advances in Game Theory, Princeton Univ. Press, Princeton, N.J., 1964, pp.Â 85â€“101. MR**0170727** - Jens Erik Fenstad,
*The axiom of determinateness*, Proceedings of the Second Scandinavian Logic Symposium (Univ. Oslo, Oslo, 1970) Studies in Logic and the Foundations of Mathematics, Vol. 63, North-Holland, Amsterdam, 1971, pp.Â 41â€“61. MR**0332479** - Harvey M. Friedman,
*Borel sets and hyperdegrees*, J. Symbolic Logic**38**(1973), 405â€“409. MR**335248**, DOI 10.2307/2273034
â€”, - Stephen H. Hechler,
*On the existence of certain cofinal subsets of $^{\omega }\omega$*, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1974, pp.Â 155â€“173. MR**0360266**
A. S. Kechris, - Alexander S. Kechris,
*The theory of countable analytical sets*, Trans. Amer. Math. Soc.**202**(1975), 259â€“297. MR**419235**, DOI 10.1090/S0002-9947-1975-0419235-7 - Alexander S. Kechris,
*Measure and category in effective descriptive set theory*, Ann. Math. Logic**5**(1972/73), 337â€“384. MR**369072**, DOI 10.1016/0003-4843(73)90012-0 - K. Kuratowski,
*Topology. Vol. I*, Academic Press, New York-London; PaĹ„stwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR**0217751**
D. A. Martin, $\Delta _{2n}^1$ - Yiannis N. Moschovakis,
*Descriptive set theory*, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**561709** - Yiannis N. Moschovakis,
*Determinacy and prewellorderings of the continuum*, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp.Â 24â€“62. MR**0280362** - Y. N. Moschovakis,
*Analytical definability in a playful universe*, Logic, methodology and philosophy of science, IV (Proc. Fourth Internat. Congress, Bucharest, 1971) Studies in Logic and Foundations of Math., Vol. 74, North-Holland, Amsterdam, 1973, pp.Â 77â€“85. MR**0540769** - Yiannis N. Moschovakis,
*Uniformization in a playful universe*, Bull. Amer. Math. Soc.**77**(1971), 731â€“736. MR**285390**, DOI 10.1090/S0002-9904-1971-12789-1 - Jan Mycielski,
*On the axiom of determinateness*, Fund. Math.**53**(1963/64), 205â€“224. MR**161787**, DOI 10.4064/fm-53-2-205-224 - Jan Mycielski and S. Ĺšwierczkowski,
*On the Lebesgue measurability and the axiom of determinateness*, Fund. Math.**54**(1964), 67â€“71. MR**161788**, DOI 10.4064/fm-54-1-67-71 - John C. Oxtoby,
*Measure and category*, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR**584443**, DOI 10.1007/978-1-4684-9339-9 - Hartley Rogers Jr.,
*Theory of recursive functions and effective computability*, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR**0224462** - Joseph R. Shoenfield,
*Mathematical logic*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967. MR**0225631** - Jacques Stern,
*Some measure theoretic results in effective descriptive set theory*, Israel J. Math.**20**(1975), no.Â 2, 97â€“110. MR**387057**, DOI 10.1007/BF02757880

*Some problems connected with the axiom of determinacy*, Ph. D. Thesis, Rockefeller Univ., 1972.

*A basis theorem for L*(circulated notes). D. Guaspari,

*Thin and wellordered analytical sets*, Ph.D. Thesis, Univ. of Cambridge, 1972.

*Lecture notes on descriptive set theory*, M.I.T., Cambridge, Mass., 1973.

*determinacy implies*$\Sigma _{2n}^1$

*determinacy*, 1973 (circulated notes). â€”,

*Countable*$\Sigma _{2n + 1}^1$

*sets*, 1972 (circulated notes).

## Bibliographic Information

- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**229**(1977), 191-207 - MSC: Primary 04A15; Secondary 54H05
- DOI: https://doi.org/10.1090/S0002-9947-1977-0450070-1
- MathSciNet review: 0450070