Knot modules. I
HTML articles powered by AMS MathViewer
- by Jerome Levine
- Trans. Amer. Math. Soc. 229 (1977), 1-50
- DOI: https://doi.org/10.1090/S0002-9947-1977-0461518-0
- PDF | Request permission
Abstract:
For a differentiable knot, i.e. an imbedding ${S^n} \subset {S^{n + 2}}$, one can associate a sequence of modules $\{ {A_q}\}$ over the ring $Z[t,{t^{ - 1}}]$, which are the source of many classical knot invariants. If X is the complement of the knot, and $\tilde X \to X$ the canonical infinite cyclic covering, then ${A_q} = {H_q}(\tilde X)$. In this work a complete algebraic characterization of these modules is given, except for the Z-torsion submodule of ${A_1}$.References
- Richard C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. (2) 65 (1957), 340–356. MR 85512, DOI 10.2307/1969966
- R. H. Crowell, The group $G’/G''$ of a knot group $G$, Duke Math. J. 30 (1963), 349–354. MR 154277, DOI 10.1215/S0012-7094-63-03036-9
- Sylvain E. Cappell and Julius L. Shaneson, Topological knots and knot cobordism, Topology 12 (1973), 33–40. MR 321099, DOI 10.1016/0040-9383(73)90020-7
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099
- R. H. Fox and N. Smythe, An ideal class invariant of knots, Proc. Amer. Math. Soc. 15 (1964), 707–709. MR 165516, DOI 10.1090/S0002-9939-1964-0165516-2
- M. A. Gutiérrez, On knot modules, Invent. Math. 17 (1972), 329–335. MR 321103, DOI 10.1007/BF01406239
- Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309 (German). MR 6510, DOI 10.1007/BF02565622 A. Haefliger, Spheres d’homotopie nouées, Séminaire Bourbaki, 1964/1965, Exposé 280, Benjamin, New York, 1966. MR 33 #54201.
- F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau. MR 0341499
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- C. Kearton, Classification of simple knots by Blanchfield duality, Bull. Amer. Math. Soc. 79 (1973), 952–955. MR 324706, DOI 10.1090/S0002-9904-1973-13274-4
- Michel A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225–271 (French). MR 189052, DOI 10.24033/bsmf.1624
- Michel A. Kervaire, Geometric and algebraic intersection numbers, Comment. Math. Helv. 39 (1965), 271–280. MR 179802, DOI 10.1007/BF02566954
- R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742–749. MR 242166, DOI 10.1090/S0002-9904-1969-12271-8
- J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185–198. MR 266226, DOI 10.1007/BF02567325
- Jerome Levine, Knot modules, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 25–34. MR 0405437
- J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9–16. MR 179803, DOI 10.1016/0040-9383(65)90045-5
- J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537–554. MR 200922, DOI 10.2307/1970459
- J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR 246314, DOI 10.1007/BF02564525
- H. Blaine Lawson Jr., Foliations, Bull. Amer. Math. Soc. 80 (1974), 369–418. MR 343289, DOI 10.1090/S0002-9904-1974-13432-4
- John Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137–147. MR 141115, DOI 10.2307/1970268
- John Milnor, On isometries of inner product spaces, Invent. Math. 8 (1969), 83–97. MR 249519, DOI 10.1007/BF01404612
- Barry Mazur, Symmetric homology spheres, Illinois J. Math. 6 (1962), 245–250. MR 140102
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- James R. Munkres, Elementary differential topology, Annals of Mathematics Studies, No. 54, Princeton University Press, Princeton, N.J., 1963. Lectures given at Massachusetts Institute of Technology, Fall, 1961. MR 0163320, DOI 10.1515/9781400882656
- C. S. Seshadri, Triviality of vector bundles over the affine space $K^{2}$, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 456–458. MR 102527, DOI 10.1073/pnas.44.5.456
- Martin Scharlemann, Non-PL imbeddings of $3$-manifolds, Amer. J. Math. 100 (1978), no. 3, 539–545. MR 515651, DOI 10.2307/2373837 H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner, Leipzig, 1934.
- S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399. MR 153022, DOI 10.2307/2372978
- H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), 464–498. MR 143201, DOI 10.2307/1970369
- H. F. Trotter, On $S$-equivalence of Seifert matrices, Invent. Math. 20 (1973), 173–207. MR 645546, DOI 10.1007/BF01394094 E. R. van Kampen, Komplexe in euklidischen Räumen, Abh. Math. Sem. Univ. Hamburg 9 (1932), 72-78. C. T. C. Wall, On some knotted spheres and a theorem of B. Mazur (unpublished).
- C. T. C. Wall, Classification of $(n-1)$-connected $2n$-manifolds, Ann. of Math. (2) 75 (1962), 163–189. MR 145540, DOI 10.2307/1970425
- C. T. C. Wall, Classification problems in differential topology. VI. Classification of $(s-1)$-connected $(2s+1)$-manifolds, Topology 6 (1967), 273–296. MR 216510, DOI 10.1016/0040-9383(67)90020-1
- C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281–298. MR 156890, DOI 10.1016/0040-9383(63)90012-0
- C. T. C. Wall, Quadratic forms on finite groups. II, Bull. London Math. Soc. 4 (1972), 156–160. MR 322071, DOI 10.1112/blms/4.2.156
- C. T. C. Wall, Locally flat $\textrm {PL}$ submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), 5–8. MR 227993, DOI 10.1017/s0305004100040834
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 229 (1977), 1-50
- MSC: Primary 57C45
- DOI: https://doi.org/10.1090/S0002-9947-1977-0461518-0
- MathSciNet review: 0461518