Growth problems for subharmonic functions of finite order in space
HTML articles powered by AMS MathViewer
- by N. V. Rao and Daniel F. Shea
- Trans. Amer. Math. Soc. 230 (1977), 347-370
- DOI: https://doi.org/10.1090/S0002-9947-1977-0444974-3
- PDF | Request permission
Abstract:
For a function $u(x)$ subharmonic (or ${C^2}$) in ${{\mathbf {R}}^m}$, we compare the “harmonics” (defined in §1) of u with those of a related subharmonic function whose total Riesz mass in $|x| \leqslant r$ is the same as that of u, but whose ${L^2}$ norm on $|x| = r$ is maximal, for all $0 < r < \infty$. We deduce estimates on the growth of the Riesz mass of u in $|x| \leqslant r$, as $r \to \infty$.References
- W. Donoghue, Distributions and Fourier transforms, Academic Press, New York, 1969.
- Albert Edrei and Wolfgang H. J. Fuchs, On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc. 93 (1959), 292–328. MR 109887, DOI 10.1090/S0002-9947-1959-0109887-4
- Albert Edrei and Wolfgang H. J. Fuchs, The deficiencies of meromorphic functions of order less than one, Duke Math. J. 27 (1960), 233–249. MR 123717
- Albert Edrei, Wolfgang H. J. Fuchs, and Simon Hellerstein, Radial distribution and deficiencies of the values of a meromorphic function, Pacific J. Math. 11 (1961), 135–151. MR 122999
- A. A. Gol′dberg and I. V. Ostrovskiĭ, Raspredelenie znacheniĭ meromorfnykh funktsiĭ, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0280720
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038 —, Subharmonic functions in ${R^m}$, Actes, Congrès Internat. Math. (Nice, 1970), Vol. 2, Gauthier-Villars, Paris, 1971, pp. 601-605.
- W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, London Mathematical Society Monographs, No. 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0460672
- Simon Hellerstein and Daniel F. Shea, Bounds for the deficiencies of meromorphic functions of finite order. , Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 214–239. MR 0236388
- Joseph Miles and Daniel F. Shea, An extremal problem in value-distribution theory, Quart. J. Math. Oxford Ser. (2) 24 (1973), 377–383. MR 324041, DOI 10.1093/qmath/24.1.377
- Claus Müller, Spherical harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR 0199449
- I. V. Ostrovskiĭ, Certain asymptotic properties of entire functions with real negative zeros, Zap. Meh.-Mat. Fak. i Har′kov. Mat. Obšč. (4) 28 (1961), 23–32 (Russian). MR 0249620 G. Pólya, On the minimum modulus of integral functions of order less than unity, J. London Math. Soc. 1 (1926), 78-86. T. Radó, Subharmonic functions, Ergebnisse Math. Grenz., Band 5, Springer-Verlag, Berlin, 1937.
- D. F. Shea, On the Valiron deficiencies of meromorphic functions of finite order, Trans. Amer. Math. Soc. 124 (1966), 201–227. MR 200458, DOI 10.1090/S0002-9947-1966-0200458-1
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759 A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, vol. I, McGraw-Hill, New York, 1953. MR 15, 419.
- Maynard G. Arsove, Functions representable as differences of subharmonic functions, Trans. Amer. Math. Soc. 75 (1953), 327–365. MR 59416, DOI 10.1090/S0002-9947-1953-0059416-3
- B. Ja. Levin, Distribution of zeros of entire functions, American Mathematical Society, Providence, R.I., 1964. MR 0156975
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 230 (1977), 347-370
- MSC: Primary 31B05; Secondary 30A70
- DOI: https://doi.org/10.1090/S0002-9947-1977-0444974-3
- MathSciNet review: 0444974