Topological examples of projective modules
HTML articles powered by AMS MathViewer
- by Richard G. Swan
- Trans. Amer. Math. Soc. 230 (1977), 201-234
- DOI: https://doi.org/10.1090/S0002-9947-1977-0448350-9
- PDF | Request permission
Abstract:
A new and more elementary proof is given for LĂnstedâs theorem that vector bundles over a finite complex can be represented by projective modules over a noetherian ring. The rings obtained are considerably smaller than those of LĂnsted. In certain cases, methods associated with Hilbertâs 17th problem can be used to give a purely algebraic description of the rings. In particular, one obtains a purely algebraic characterization of the homotopy groups of the classical Lie groups. Several examples are given of rings such that all projective modules of low rank are free. If $m \equiv 2 \bmod 4$, there is a noetherian ring of dimension m with nontrivial projective modules of rank m such that all projective modules of ${\text {rank}} \ne m$ are free.References
- E. Artin, Ăber die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg 5 (1927), 100-115.
- Michael Atiyah and Raoul Bott, On the periodicity theorem for complex vector bundles, Acta Math. 112 (1964), 229â247. MR 178470, DOI 10.1007/BF02391772
- M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl, suppl. 1, 3â38. MR 167985, DOI 10.1016/0040-9383(64)90003-5
- M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7â38. MR 0139181 H. Bass, An algebraic analogue of Boltâs complex periodicity theorem, Mimeographed notes, Columbia Univ., 1964.
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- H. Bass, Modules which support nonsingular forms, J. Algebra 13 (1969), 246â252. MR 245569, DOI 10.1016/0021-8693(69)90073-8
- Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313â337. MR 110104, DOI 10.2307/1970106 B. H. Dayton, K-theory of special normed algebras (to appear).
- D. W. Dubois and G. Efroymson, Algebraic theory of real varieties. I, Studies and Essays (Presented to Yu-why Chen on his 60th Birthday, April 1, 1970) Nat. Taiwan Univ., Math. Res. Center, Taipei, 1970, pp. 107â135. MR 0280483
- Eldon Dyer, Cohomology theories, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0268883
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886
- E. Graham Evans Jr., Projective modules as fiber bundles, Proc. Amer. Math. Soc. 27 (1971), 623â626. MR 269642, DOI 10.1090/S0002-9939-1971-0269642-2 O. Forster, Funktionentheoretischer Hilfsmittel in der Theorie der kommutativen Banach Algebren, Jber. Deutsch. Math.-Verein 76 (1974), 1-17.
- Robert M. Fossum, Vector bundles over spheres are algebraic, Invent. Math. 8 (1969), 222â225. MR 250298, DOI 10.1007/BF01406073
- A. V. Geramita and L. G. Roberts, Algebraic vector bundles on projective space, Invent. Math. 10 (1970), 298â304. MR 480519, DOI 10.1007/BF01418777
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables, Uspehi Mat. Nauk 16 (1961), no. 1 (97), 91â118 (Russian). MR 0131418
- Danielle Gondard and Paulo Ribenboim, Fonctions dĂ©finies positives sur les variĂ©tĂ©s rĂ©elles, Bull. Sci. Math. (2) 98 (1974), no. 1, 39â47. MR 432614 A. Grothendieck, RevĂȘtements Ă©tales et groupe fondamental, SGA1, Lecture Notes in Math., vol. 224, Springer-Verlag, Berlin and New York, 1971. MR 50 #7129.
- David Hilbert, Ueber die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann. 32 (1888), no. 3, 342â350 (German). MR 1510517, DOI 10.1007/BF01443605
- Lars Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555â568. MR 124734, DOI 10.1007/BF02589517
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Knud LĂžnsted, An algebraization of vector bundles on compact manifolds, J. Pure Appl. Algebra 2 (1972), 193â207. MR 337964, DOI 10.1016/0022-4049(72)90002-3
- Knud LĂžnsted, Vector bundles over finite $\textrm {CW}$-complexes are algebraic, Proc. Amer. Math. Soc. 38 (1973), 27â31. MR 317315, DOI 10.1090/S0002-9939-1973-0317315-1
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Nadine Moore, Algebraic vector bundles over the $2$-sphere, Invent. Math. 14 (1971), 167â172. MR 294334, DOI 10.1007/BF01405362
- T. S. Motzkin, The arithmetic-geometric inequality, Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) Academic Press, New York, 1967, pp. 205â224. MR 0223521
- M. Pavaman Murthy and Richard G. Swan, Vector bundles over affine surfaces, Invent. Math. 36 (1976), 125â165. MR 439842, DOI 10.1007/BF01390007
- KeiĂŽ Nagami, Dimension theory, Pure and Applied Mathematics, Vol. 37, Academic Press, New York-London, 1970. With an appendix by Yukihiro Kodama. MR 0271918
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Abraham Robinson, Complete theories, North-Holland Publishing Co., Amsterdam, 1956. MR 0075897
- Abraham Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland Publishing Co., Amsterdam, 1963. MR 0153570
- Raphael M. Robinson, Some definite polynomials which are not sums of squares of real polynomials, Selected questions of algebra and logic (a collection dedicated to the memory of A. I. MalâČcev) (Russian), Izdat. âNaukaâ Sibirsk. Otdel., Novosibirsk, 1973, pp. 264â282. MR 0337878
- A. Seidenberg, On the dimension theory of rings. II, Pacific J. Math. 4 (1954), 603â614. MR 65540
- Jean-Pierre Serre, Groupes dâhomotopie et classes de groupes abĂ©liens, Ann. of Math. (2) 58 (1953), 258â294 (French). MR 59548, DOI 10.2307/1969789 N. E. Steenrod, The topology of fiber bundles, Princeton Univ. Press, Princeton, N.J., 1951. MR 12, 522.
- Richard G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264â277. MR 143225, DOI 10.1090/S0002-9947-1962-0143225-6
- R. G. Swan, Algebraic $K$-theory, Lecture Notes in Mathematics, No. 76, Springer-Verlag, Berlin-New York, 1968. MR 0245634
- Richard G. Swan, A cancellation theorem for projective modules in the metastable range, Invent. Math. 27 (1974), 23â43. MR 376681, DOI 10.1007/BF01389963 â, Serreâs problem, Report of the Conference in Algebra, Queenâs Papers in Pure and Appl. Math. No. 42, Queenâs Univ., Kingston, Ont., 1975.
- L. N. VaserĆĄteÄn, The stable range of rings and the dimension of topological spaces, Funkcional. Anal. i PriloĆŸen. 5 (1971), no. 2, 17â27 (Russian). MR 0284476
- Hassler Whitney, Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957), 545â556. MR 95844, DOI 10.2307/1969908
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 230 (1977), 201-234
- MSC: Primary 55F25; Secondary 13J99, 16A80, 14F05
- DOI: https://doi.org/10.1090/S0002-9947-1977-0448350-9
- MathSciNet review: 0448350