On the integrable and square-integrable representations of $\textrm {Spin}(1, 2m)$
HTML articles powered by AMS MathViewer
- by Ernest Thieleker
- Trans. Amer. Math. Soc. 230 (1977), 1-40
- DOI: https://doi.org/10.1090/S0002-9947-1977-0453925-7
- PDF | Request permission
Abstract:
All the unitary equivalence classes of irreducible integrable and square-integrable representations of the groups ${\text {Spin}}(1,2m),m \geqslant 2$, are determined. The method makes use of some elementary results on differential equations and the classification of irreducible unitary representations of these groups. In the latter classification, certain ambiguities resulting from possible equivalences not taken into account in a previous paper, are cleared up here.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238 A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi et al., Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953.
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- Jacques Dixmier, Représentations intégrables du groupe de De Sitter, Bull. Soc. Math. France 89 (1961), 9–41. MR 140614
- A. M. Gavrilik and A. U. Klimyk, Analysis of the representations of the Lorentz and Euclidean groups of $n$-th order, Akad. Nauk Ukrain. SSR, Inst. Teoret. Fiz., Kiev, 1975. Report ITP-75-18E. MR 0480891
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Representations of semisimple Lie groups. VI. Integrable and square-integrable representations, Amer. J. Math. 78 (1956), 564–628. MR 82056, DOI 10.2307/2372674
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
- Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. MR 219666, DOI 10.1007/BF02392813
- Harish-Chandra, On the theory of the Eisenstein integral, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), Lecture Notes in Math., Vol. 266, Springer, Berlin, 1972, pp. 123–149. MR 0399355
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Hrvoje Kraljević, Representations of the universal convering group of the group $\textrm {SU}(n,\,1)$, Glasnik Mat. Ser. III 8(28) (1973), 23–72 (English, with Serbo-Croatian summary). MR 330355
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Serge Lang, $\textrm {SL}_{2}(\textbf {R})$, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. MR 0430163
- Ernest Thieleker, On the quasi-simple irreducible representations of the Lorentz groups, Trans. Amer. Math. Soc. 179 (1973), 465–505. MR 325856, DOI 10.1090/S0002-9947-1973-0325856-0
- Ernest A. Thieleker, The unitary representations of the generalized Lorentz groups, Trans. Amer. Math. Soc. 199 (1974), 327–367. MR 379754, DOI 10.1090/S0002-9947-1974-0379754-8
- Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Pure and Applied Mathematics, No. 19, Marcel Dekker, Inc., New York, 1973. MR 0498996 G. Warner, Harmonic analysis on semisimple Lie groups. Vols. I, II, Springer-Verlag, Berlin and New York, 1972. D. P. Želobenko, Compact Lie groups and their representations, “Nauka", Moscow, 1970; English transl., Transl. Math. Monographs, vol. 40, Amer. Math. Soc., Providence, R.I., 1973.
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 230 (1977), 1-40
- MSC: Primary 22E43
- DOI: https://doi.org/10.1090/S0002-9947-1977-0453925-7
- MathSciNet review: 0453925