## Circle actions on simply connected $4$-manifolds

HTML articles powered by AMS MathViewer

- by Ronald Fintushel PDF
- Trans. Amer. Math. Soc.
**230**(1977), 147-171 Request permission

## Abstract:

Locally smooth ${S^1}$-actions on simply connected 4-manifolds are studied in terms of their weighted orbit spaces. An equivariant classification theorem is proved, and the weighted orbit space is used to compute the quadratic form of a given simply connected 4-manifold with ${S^1}$-action. This is used to show that a simply connected 4-manifold which admits a locally smooth ${S^1}$-action must be homotopy equivalent to a connected sum of copies of ${S^4},C{P^2}, - C{P^2}$, and ${S^2} \times {S^2}$.## References

- Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144** - William Browder,
*Surgery on simply-connected manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65, Springer-Verlag, New York-Heidelberg, 1972. MR**0358813** - Philip T. Church and Klaus Lamotke,
*Almost free actions on manifolds*, Bull. Austral. Math. Soc.**10**(1974), 177–196. MR**370632**, DOI 10.1017/S000497270004082X - Ronald Fintushel,
*Locally smooth circle actions on homotopy $4$-spheres*, Duke Math. J.**43**(1976), no. 1, 63–70. MR**394716** - F. Hirzebruch, W. D. Neumann, and S. S. Koh,
*Differentiable manifolds and quadratic forms*, Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau. MR**0341499** - John Milnor,
*On simply connected $4$-manifolds*, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 122–128. MR**0103472**
D. Montgomery and C. T. Yang, - Peter Orlik,
*Seifert manifolds*, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR**0426001** - Peter Orlik and Frank Raymond,
*Actions of $\textrm {SO}(2)$ on 3-manifolds*, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 297–318. MR**0263112** - Peter Orlik and Frank Raymond,
*Actions of the torus on $4$-manifolds. I*, Trans. Amer. Math. Soc.**152**(1970), 531–559. MR**268911**, DOI 10.1090/S0002-9947-1970-0268911-3 - H. Seifert,
*Topologie Dreidimensionaler Gefaserter Räume*, Acta Math.**60**(1933), no. 1, 147–238 (German). MR**1555366**, DOI 10.1007/BF02398271 - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112**

*Groups on*${S^n}$

*with principal orbits of dimension*$n - 3$, Illinois J. Math.

**4**(1960), 507-517. MR

**23**#A3199.

## Additional Information

- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**230**(1977), 147-171 - MSC: Primary 57E25
- DOI: https://doi.org/10.1090/S0002-9947-1977-0458456-6
- MathSciNet review: 0458456