Circle actions on simply connected $4$-manifolds
HTML articles powered by AMS MathViewer
- by Ronald Fintushel PDF
- Trans. Amer. Math. Soc. 230 (1977), 147-171 Request permission
Abstract:
Locally smooth ${S^1}$-actions on simply connected 4-manifolds are studied in terms of their weighted orbit spaces. An equivariant classification theorem is proved, and the weighted orbit space is used to compute the quadratic form of a given simply connected 4-manifold with ${S^1}$-action. This is used to show that a simply connected 4-manifold which admits a locally smooth ${S^1}$-action must be homotopy equivalent to a connected sum of copies of ${S^4},C{P^2}, - C{P^2}$, and ${S^2} \times {S^2}$.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- William Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65, Springer-Verlag, New York-Heidelberg, 1972. MR 0358813
- Philip T. Church and Klaus Lamotke, Almost free actions on manifolds, Bull. Austral. Math. Soc. 10 (1974), 177–196. MR 370632, DOI 10.1017/S000497270004082X
- Ronald Fintushel, Locally smooth circle actions on homotopy $4$-spheres, Duke Math. J. 43 (1976), no. 1, 63–70. MR 394716
- F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau. MR 0341499
- John Milnor, On simply connected $4$-manifolds, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 122–128. MR 0103472 D. Montgomery and C. T. Yang, Groups on ${S^n}$ with principal orbits of dimension $n - 3$, Illinois J. Math. 4 (1960), 507-517. MR 23 #A3199.
- Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001
- Peter Orlik and Frank Raymond, Actions of $\textrm {SO}(2)$ on 3-manifolds, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 297–318. MR 0263112
- Peter Orlik and Frank Raymond, Actions of the torus on $4$-manifolds. I, Trans. Amer. Math. Soc. 152 (1970), 531–559. MR 268911, DOI 10.1090/S0002-9947-1970-0268911-3
- H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, DOI 10.1007/BF02398271
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 230 (1977), 147-171
- MSC: Primary 57E25
- DOI: https://doi.org/10.1090/S0002-9947-1977-0458456-6
- MathSciNet review: 0458456