Continua whose cone and hyperspace are homeomorphic
HTML articles powered by AMS MathViewer
- by Sam B. Nadler
- Trans. Amer. Math. Soc. 230 (1977), 321-345
- DOI: https://doi.org/10.1090/S0002-9947-1977-0464191-0
- PDF | Request permission
Abstract:
Let X be a (nonempty) metric continuum. By the hyperspace of X we mean $C(X) = \{ A$: A is a nonempty subcontinuum of $X\}$ with the Hausdorff metric H. It is determined that there are exactly eight hereditarily decomposable continua X such that the cone over X is homeomorphic to $C(X)$. Information about cone-to-hyperspace homeomorphisms, and about arc components for general classes of continua whose cone and hyperspace are homeomorphic is obtained. It is determined that indecomposable continua whose cone and hyperspace are homeomorphic have arcwise connected composants and, if finite-dimensional, have a strong form of the cone = hyperspace property.References
- R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653–663. MR 43450 K. Borsuk and S. Mazurkiewicz, Sur l’hyperespace d’un continu, C. R. Soc. Sci. Warsaw 24 (1931), 149-152.
- G. R. Gordh Jr. and Sam B. Nadler Jr., Arc components of chainable Hausdorff continua, General Topology and Appl. 3 (1973), 63–76. MR 317300
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36. MR 6505, DOI 10.1090/S0002-9947-1942-0006505-8
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- Sam B. Nadler Jr., Arc components of certain chainable continua, Canad. Math. Bull. 14 (1971), 183–189. MR 310851, DOI 10.4153/CMB-1971-033-8
- Sam B. Nadler Jr., Continua which are a one-to-one continuous image of $[0,\infty )$, Fund. Math. 75 (1972), no. 2, 123–133. (errata insert). MR 317301, DOI 10.4064/fm-75-2-123-133 —, Continua whose cones and hyperspaces are homeomorphic, Notices Amer. Math. Soc. 19 (1972), A718-A719. Abstract #72T-G150.
- Sam B. Nadler Jr., Locating cones and Hilbert cubes in hyperspaces, Fund. Math. 79 (1973), no. 3, 233–250. MR 334130, DOI 10.4064/fm-79-3-233-250
- Sam B. Nadler Jr., Multicoherence techniques applied to inverse limits, Trans. Amer. Math. Soc. 157 (1971), 227–234. MR 279761, DOI 10.1090/S0002-9947-1971-0279761-7
- Sam B. Nadler Jr. and J. Quinn, Embeddability and structure properties of real curves, Memoirs of the American Mathematical Society, No. 125, American Mathematical Society, Providence, R.I., 1972. MR 0353278
- Sam B. Nadler Jr. and J. Quinn, Embedding certain compactifications of a half-ray, Fund. Math. 78 (1973), no. 3, 217–225. MR 321011, DOI 10.4064/fm-78-3-217-225
- James T. Rogers Jr., The cone = hyperspace property, Canadian J. Math. 24 (1972), 279–285. MR 295302, DOI 10.4153/CJM-1972-022-8
- James T. Rogers Jr., Continua with cones homeomorphic to hyperspaces, General Topology and Appl. 3 (1973), 283–289. MR 362257
- J. T. Rogers Jr., Dimension of hyperspaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 177–179 (English, with Russian summary). MR 370535
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 230 (1977), 321-345
- MSC: Primary 54F20
- DOI: https://doi.org/10.1090/S0002-9947-1977-0464191-0
- MathSciNet review: 0464191