The reduced Witt ring of a formally real field
HTML articles powered by AMS MathViewer
- by Ron Brown
- Trans. Amer. Math. Soc. 230 (1977), 257-292
- DOI: https://doi.org/10.1090/S0002-9947-1977-0472781-4
- PDF | Request permission
Abstract:
The reduced Witt rings of certain formally real fields are computed here in terms of some basic arithmetic invariants of the fields. For some fields, including the rational function field in one variable over the rational numbers and the rational function field in two variables over the real numbers, this is done by computing the image of the total signature map on the Witt ring. For a wider class of fields, including all those with only finitely many square classes, it is done by computing the Witt rings of certain ultracompletions of the field and representing the reduced Witt ring as an appropriate subdirect product of the Witt rings of the ultracompletions. The reduced Witt rings of a still wider class of fields, including for example the fields of transcendence degree one and the rational function field in three variables over the real numbers, are computed similarly, except that the description of the subdirect product no longer involves only local conditions.References
- Shreeram Abhyankar, Ramification theoretic methods in algebraic geometry, Annals of Mathematics Studies, No. 43, Princeton University Press, Princeton, N.J., 1959. MR 0105416
- Ron Brown, Real places and ordered fields, Rocky Mountain J. Math. 1 (1971), no. 4, 633–636. MR 285512, DOI 10.1216/RMJ-1971-1-4-633
- Ron Brown, An approximation theorem for extended prime spots, Canadian J. Math. 24 (1972), 167–184. MR 292802, DOI 10.4153/CJM-1972-015-3
- Ron Brown, Valuations, primes and irreducibility in polynomial rings and rational function fields, Trans. Amer. Math. Soc. 174 (1972), 451–488. MR 371872, DOI 10.1090/S0002-9947-1972-0371872-1
- Ron Brown, Extended prime spots and quadratic forms, Pacific J. Math. 51 (1974), 379–395. MR 392960
- Ron Brown, Superpythagorean fields, J. Algebra 42 (1976), no. 2, 483–494. MR 427286, DOI 10.1016/0021-8693(76)90109-5
- Thomas C. Craven, The topological space of orderings of a rational function field, Duke Math. J. 41 (1974), 339–347. MR 349639
- Thomas C. Craven, The Boolean space of orderings of a field, Trans. Amer. Math. Soc. 209 (1975), 225–235. MR 379448, DOI 10.1090/S0002-9947-1975-0379448-X
- Richard Elman and T. Y. Lam, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math. 94 (1972), 1155–1194. MR 314878, DOI 10.2307/2373568
- Richard Elman, Tsit Yuen Lam, and Alexander Prestel, On some Hasse principles over formally real fields, Math. Z. 134 (1973), 291–301. MR 330045, DOI 10.1007/BF01214693
- Irving Kaplansky, Maximal fields with valuations, Duke Math. J. 9 (1942), 303–321. MR 6161
- Manfred Knebusch, Alex Rosenberg, and Roger Ware, Signatures on semilocal rings, J. Algebra 26 (1973), 208–250. MR 327761, DOI 10.1016/0021-8693(73)90021-5
- John Milnor, Algebraic $K$-theory and quadratic forms, Invent. Math. 9 (1969/70), 318–344. MR 260844, DOI 10.1007/BF01425486
- John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR 0506372
- Albrecht Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116–132 (German). MR 200270, DOI 10.1007/BF01389724
- A. Prestel, Quadratische Semi-Ordnungen und quadratische Formen, Math. Z. 133 (1973), 319–342 (German). MR 337913, DOI 10.1007/BF01177872
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Paulo Ribenboim, Théorie des valuations, Séminaire de Mathématiques Supérieures, No. 9 (Été, vol. 1964, Les Presses de l’Université de Montréal, Montreal, Que., 1968 (French). Deuxième édition multigraphiée. MR 0249425
- O. F. G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776
- Ludwig Bröcker, Zur Theorie der quadratischen Formen über formal reellen Körpern, Math. Ann. 210 (1974), 233–256 (German). MR 354549, DOI 10.1007/BF01350587 A. Prestel, Lectures on formally real fields, Monogr. Math. 22, Inst. Mat. Pura Apl., Rio de Janeiro, 1975.
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 230 (1977), 257-292
- MSC: Primary 12D15; Secondary 15A63
- DOI: https://doi.org/10.1090/S0002-9947-1977-0472781-4
- MathSciNet review: 0472781