Almost sure behavior of linear functionals of supercritical branching processes
HTML articles powered by AMS MathViewer
- by Søren Asmussen
- Trans. Amer. Math. Soc. 231 (1977), 233-248
- DOI: https://doi.org/10.1090/S0002-9947-1977-0440719-1
- PDF | Request permission
Abstract:
The exact a.s. behavior of any linear functional ${Z_n} \cdot a$ of a supercritical positively regular p-type $(1 < p < \infty )$ Galton-Watson process $\{ {Z_n}\}$ is found under a second moment hypothesis. The main new results are of iterated logarithm type, with normalizing constants depending on the decomposition of a according to the Jordan canonical form of the offspring mean matrix.References
- Søren Asmussen, Convergence rates for branching processes, Ann. Probability 4 (1976), no. 1, 139–146. MR 391286, DOI 10.1214/aop/1176996193
- Søren Asmussen and Heinrich Hering, Strong limit theorems for general supercritical branching processes with applications to branching diffusions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 3, 195–212. MR 420889, DOI 10.1007/BF00532545
- Krishna Balasundaram Athreya, Limit theorems for multitype continuous time Markov branching processes. I. The case of an eigenvector linear functional, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 320–332. MR 254927, DOI 10.1007/BF00538753
- Krishna Balasundaram Athreya, Limit theorems for multitype continuous time Markov branching processes. II. The case of an arbitrary linear functional, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 204–214. MR 254928, DOI 10.1007/BF00539201
- Krishna B. Athreya, Some refinements in the theory of supercritical multitype Markov branching processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971), 47–57. MR 307367, DOI 10.1007/BF00534165
- Krishna B. Athreya and Peter E. Ney, Branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 196, Springer-Verlag, New York-Heidelberg, 1972. MR 0373040
- Andrew D. Barbour, Tail sums of convergent series of independent random variables, Proc. Cambridge Philos. Soc. 75 (1974), 361–364. MR 339303, DOI 10.1017/s0305004100048581
- Y. S. Chow and H. Teicher, Iterated logarithm laws for weighted averages, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 87–94. MR 331488, DOI 10.1007/BF00533478 H. Hering, Refined positivity theorem for semigroups generated by perturbed elliptic differential operators (to appear).
- C. C. Heyde, Some almost sure convergence theorems for branching processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971), 189–192. MR 317426, DOI 10.1007/BF00534900
- C. C. Heyde and J. R. Leslie, Improved classical limit analogues for Galton-Watson processes with or without immigration, Bull. Austral. Math. Soc. 5 (1971), 145–155. MR 293731, DOI 10.1017/S0004972700047018
- H. Kesten and B. P. Stigum, Additional limit theorems for indecomposable multidimensional Galton-Watson processes, Ann. Math. Statist. 37 (1966), 1463–1481. MR 200979, DOI 10.1214/aoms/1177699139
- J. R. Leslie, Some limit theorems for Markov branching processes, J. Appl. Probability 10 (1973), 299–306. MR 353474, DOI 10.2307/3212347 P. Levy, Theorie de l’addition des variables aleatoires, 2ième ed., Gauthier-Villars, Paris, 1954.
- Paul-André Meyer, Martingales and stochastic integrals. I. Lecture Notes in Mathematics. Vol. 284, Springer-Verlag, Berlin-New York, 1972. MR 0426145
- Jacques Neveu, Mathematical foundations of the calculus of probability, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1965. Translated by Amiel Feinstein. MR 0198505
- William F. Stout, A martingale analogue of Kolmogorov’s law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 279–290. MR 293701, DOI 10.1007/BF00533299
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 231 (1977), 233-248
- MSC: Primary 60J80
- DOI: https://doi.org/10.1090/S0002-9947-1977-0440719-1
- MathSciNet review: 0440719