Pointwise and norm convergence of a class of biorthogonal expansions
HTML articles powered by AMS MathViewer
- by Harold E. Benzinger
- Trans. Amer. Math. Soc. 231 (1977), 259-271
- DOI: https://doi.org/10.1090/S0002-9947-1977-0442588-2
- PDF | Request permission
Abstract:
Let $\{ {u_k}(x)\} ,\{ {v_k}(x)\} ,k = 0, \pm 1, \ldots ,0 \leqslant x \leqslant 1$, be sequences of functions in ${L^\infty }(0,1)$, such that $({u_k},{v_j}) = {\delta _{kj}}$. Let ${\phi _k}(x) = \exp \;2k\pi ix$. It is shown that if for a given p, $1 < p < \infty$, the sequence $\{ {u_k}\}$ is complete in ${L^p}(0,1)$, and $\{ {v_k}\}$ is complete in ${L^q}(0,1),pq = p + q$, and if the ${u_k}$βs, ${v_j}$βs are asymptotically related to the ${\phi _k}$βs, in a sense to be made precise, then $\{ {u_k}\}$ is a basis for ${L^p}(0,1)$, equivalent to the basis $\{ {\phi _k}\}$, and for every f in ${L^p}(0,1)$ a.e. This result is then applied to the eigenfunction expansions of a large class of ordinary differential operators.References
- Harold E. Benzinger, Greenβs function for ordinary differential operators, J. Differential Equations 7 (1970), 478β496. MR 262583, DOI 10.1016/0022-0396(70)90096-3
- Harold E. Benzinger, Completeness of eigenvectors in Banach spaces, Proc. Amer. Math. Soc. 38 (1973), 319β324. MR 318941, DOI 10.1090/S0002-9939-1973-0318941-6
- Harold E. Benzinger, The $L^{p}$ behavior of eigenfunction expansions, Trans. Amer. Math. Soc. 174 (1972), 333β344 (1973). MR 328189, DOI 10.1090/S0002-9947-1972-0328189-0
- Harold E. Benzinger, An application of the Hausdorff-Young inequality to eigenfunction expansions, Ordinary and partial differential equations (Proc. Conf., Univ. Dundee, Dundee, 1974) Lecture Notes in Math., Vol. 415, Springer, Berlin, 1974, pp.Β 40β46. MR 0422744
- Garrett Birkhoff and Gian-Carlo Rota, Ordinary differential equations, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR 0138810 G. D. Birkhoff, A theorem on series of orthogonal functions with an application to Sturm-Liouville series, Proc. Nat. Acad. Sci. U. S. A. 3 (1917), 656-659.
- Fred Brauer, On the completeness of biorthogonal systems, Michigan Math. J. 11 (1964), 379β383. MR 168839 M. M. Day, Normed linear spaces, second printing corrected, Springer-Verlag, Berlin, 1962. MR 20 #1187. N. Dunford and J. T. Schwartz, Linear operators, III, Interscience, New York, 1971.
- John E. Gilbert, Maximal theorems for some orthogonal series. I, Trans. Amer. Math. Soc. 145 (1969), 495β515. MR 252941, DOI 10.1090/S0002-9947-1969-0252941-3
- John E. Gilbert, Maximal theorems for some orthogonal series. II, J. Math. Anal. Appl. 31 (1970), 349β368. MR 419922, DOI 10.1016/0022-247X(70)90030-2
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- I. I. Hirschman Jr., On multiplier transformations, Duke Math. J. 26 (1959), 221β242. MR 104973
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- Jerry L. Kazdan, Perturbation of complete orthonormal sets and eigenfunction expansions, Proc. Amer. Math. Soc. 27 (1971), 506β510. MR 271767, DOI 10.1090/S0002-9939-1971-0271767-2
- E. R. Lorch, Bicontinuous linear transformations in certain vector spaces, Bull. Amer. Math. Soc. 45 (1939), 564β569. MR 346, DOI 10.1090/S0002-9904-1939-07035-3
- Charles J. Mozzochi, On the pointwise convergence of Fourier series, Lecture Notes in Mathematics, Vol. 199, Springer-Verlag, Berlin-New York, 1971. MR 0445205
- M. A. Neumark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin, 1960 (German). MR 0216049
- J. R. Retherford and J. R. Holub, The stability of bases in Banach and Hilbert spaces, J. Reine Angew. Math. 246 (1971), 136β146. MR 291776
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399
- M. H. Stone, A comparison of the series of Fourier and Birkhoff, Trans. Amer. Math. Soc. 28 (1926), no.Β 4, 695β761. MR 1501372, DOI 10.1090/S0002-9947-1926-1501372-6 P. W. Walker, Certain second order boundary value problems, Notices Amer. Math. Soc. 22 (1975), A-139. Abstract #720-34-27.
- J. L. Walsh, On the convergence of the Sturm-Liouville series, Ann. of Math. (2) 24 (1922), no.Β 2, 109β120. MR 1502632, DOI 10.2307/1967709
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 231 (1977), 259-271
- MSC: Primary 42A60
- DOI: https://doi.org/10.1090/S0002-9947-1977-0442588-2
- MathSciNet review: 0442588