## Associated and skew-orthologic simplexes

HTML articles powered by AMS MathViewer

- by Leon Gerber
- Trans. Amer. Math. Soc.
**231**(1977), 47-63 - DOI: https://doi.org/10.1090/S0002-9947-1977-0445393-6
- PDF | Request permission

## Abstract:

A set of $n + 1$ lines in*n*-space is said to be

**associated**if every $(n - 2)$-flat which meets

*n*of the lines also meets the remaining line. Two Simplexes are

**associated**if the joins of their corresponding vertices are associated. Two Simplexes are

**(skew-)orthologic**if the perpendiculars from the vertices of one on the faces of the other are concurrent (associated); it follows that the reciprocal relation holds. In an earlier paper,

*Associated and Perspective Simplexes*, we gave an affine necessary and sufficient condition for two simplexes to be associated that was so easy to apply that extensions to

*n*-dimensions of nearly all known theorems, and a few new ones, were proved in a few lines of calculations. In this sequel we take a closer look at some of the results of the earlier paper and prove some new results. Then we give simple Euclidean necessary and sufficient conditions for two simplexes to be orthologic or skew-orthologic which yield as corollaries known results on altitudes, the Monge point and orthocentric simplexes. We conclude by discussing some of the qualitative differences between the geometries of three and higher dimensions.

## References

- L. Berzolari,
- E. Egerváry,
*On orthocentric simplexes*, Acta Litt. Sci. Szeged**9**(1940), 218–226. MR**973**
R. W. Genese, - Leon Gerber,
*Spheres tangent to all the faces of a simplex*, J. Combinatorial Theory Ser. A**12**(1972), 453–456. MR**298555**, DOI 10.1016/0097-3165(72)90106-9 - Leon Gerber,
*Associated and perspective simplexes*, Trans. Amer. Math. Soc.**201**(1975), 43–55. MR**355788**, DOI 10.1090/S0002-9947-1975-0355788-5 - Leon Gerber,
*The orthocentric simplex as an extreme simplex*, Pacific J. Math.**56**(1975), no. 1, 97–111. MR**376542**
Proposed as a problem by J. D. Gergonne, Annales Math. - R. Goormaghtigh,
*Questions, Discussions, and Notes: A Generalization of the Orthopole Theorem*, Amer. Math. Monthly**41**(1934), no. 7, 440–441. MR**1523151**, DOI 10.2307/2300304
E. Jahnke, - Sahib Ram Mandan,
*Pascal’s theorem in $n$-space*, J. Austral. Math. Soc.**5**(1965), 401–408. MR**0188844**
W. Mantel, - Gaston Darboux,
*Sur les relations entre les groupes de points, de cercles et de sphères dans le plan et dans l’espace*, Ann. Sci. École Norm. Sup. (2)**1**(1872), 323–392 (French). MR**1508589**
O. Dunkel (proposal and solution), - J. Garfunkel,
*The Triangle Reinvestigated*, Amer. Math. Monthly**72**(1965), no. 1, 12–20. MR**1533056**, DOI 10.2307/2312990 - J. Bilo,
*Sur l’affinité orthologique*, Mathesis**65**(1956), 509–516 (French). MR**82680**
Moret-Blanc,

*Sulla omologia di due piramidi in un iperspazio*, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (5)

**13**(1904), 446-451. —,

*Sui sistemi di*$n + 1$

*rette dello spazio ad n dimensioni situate in posizion di Schläfli*, Rend. Circ. Mat. Palermo (2)

**20**(1905), 229-247.

*Question*18229, Educational Times Reprints (3)

**2**(1917), 15, 49-50.

**17**(1826-27), 83. Solved by E. E. Bobillier and Garbinsky, ibid.

**18**(1827-28), 182-184, and by Steiner, Crelle

**2**(1827), 268. G. Glaeser,

*Sur une classe de tétraèdres*, Rev. Math. Spéc.

**62**(1951/52), 269-272.

*Aufgaben und Lehrsätze*#104, Arch. Math. Phys. (3)

**8**(1904-05), 81-82.

*Oplosung von Vraagstuk*LXXVI, Wiskundige Opgaven

**9**(1902-04), 168-173. Proposed as Question 11933 and again as Question 16101 by J. Neuberg in Educational Times Reprints. Solved by A. Droz-Farny, ibid.

**60**(1894), 54-55; by A. M. Nesbitt, ibid. (2)

**12**(1907), 67; and by E. J. Nansen, ibid. (2)

**13**(1908), 51. J. Neuberg,

*Memoir sur le tétraèdre*, Acad. Roy. Sci. Lettres Beaux-arts Belgique, Mem. Couronnes

**37**(1884), 1-72. —,

*Sur les equicentres de deux systemes de n points*, Mem. Soc. Roy. Sci. Liège (3)

**10**(1914), 15 pp. W. J. C. Sharp,

*On the properties of simplicissima*, Proc. London Math. Soc.

**18**(1886/87), 325-359; ibid.

**19**(1888), 423-482. V. Thébault,

*Parmi les belles figures de géométrie dans l’espace*, Librairie Vuibert, Paris, 1955. MR

**16**, 737.

*Problem*3830, Amer. Math. Monthly

**46**(1939). N. A. Court (proposal) and O. Li (solution),

*Problem*4271, Amer. Math. Monthly

**56**(1944), 420-421. G. D. Simonesco,

*Sur les triangles trihomologique et triorthologique*, Bull. Math. Phys. École Polytech. Bucarest

**6**(1936), 191-198.

*Solution to Question*1460, Nouv. Annales Math. (3)

**3**(1884), 484-487.

## Bibliographic Information

- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**231**(1977), 47-63 - MSC: Primary 50B10
- DOI: https://doi.org/10.1090/S0002-9947-1977-0445393-6
- MathSciNet review: 0445393